
©2008 by Pathfinder Solutions

Multi-Tasking Features for PathMATE

Transformation Maps

Version 3.0

November 7, 2007

PathMATE Technical Notes

Pathfinder Solutions LLC

33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com

888-662-7284

 ii

Table Of Contents

1. Introduction... 1

2. Philosophy ... 1

Task Proliferation in Traditional Systems .. 1

The Event-Driven Paradigm .. 1

3. Design Approach .. 2

4. Capabilities .. 4

Domain Allocation ... 4

Analysis Property Extensions .. 5

Translation Features .. 6

Mechanisms Features .. 6

Analysis Implications ... 6

Domain Service Allocation .. 7

Analysis Property Extensions .. 8

Translation Features .. 9

Mechanisms Features .. 9

Analysis Implications ... 9

Class Allocation ... 10

Analysis Property Features ... 11

Translation Extensions Features .. 12

Mechanisms Extensions .. 12

Analysis Implications ... 12

Dynamic Domain Service Allocation ... 13

Multi-Tasking Features for PathMATE Transformation Maps

1

1. Introduction

This Technical Note describes the capabilities to be deployed in support of multi-

tasking for the PathMATE Transformation Maps. These capabilities are compatible

with multi-process and multi-processor capabilities as specified in the Distributed

Deployment Technical Note.

2. Philosophy

Task Proliferation in Traditional Systems

Traditional embedded systems development calls on specific skill sets that are

needed to deploy complex functionality in constrained execution

environments. Prominent among these skills is the ability for an embedded

systems programmer to break up their system into separate threads of

control – tasks – and craft their interaction. This is done to achieve apparent

parallelism and to simplify the programming of each functional element using

primarily synchronous programming languages (referring to function calls in

C, etc.).

The coincidence of a rapid increase in complexity in embedded systems and

common support for multi-tasking in most embedded operating systems have

resulted in a proliferation of tasks in embedded systems. The incremental

growth of established systems also promotes the creation of new tasks to

conveniently add new capabilities to existing implementation architectures.

Overall, hand-programmed embedded systems tend to use a larger number

of tasks than is required, incurring unnecessary run-time overhead in context

switching and contention mechanisms, and needlessly complicating debug

and maintenance.

The Event-Driven Paradigm

The use of MDA models breaks some of the constraints of the hand-

programming approach. With UML statecharts capturing class lifecycles, a

choice is available to the synchronous function call. In addition to the explicit

addition of an asynchronous choice in the UML Event, an implicit choice is also

now available. By using the flexibility of template-based translation, even

synchronous service calls can be implemented as asynchronous messages in

some cases. Both of these implementation options support the allocation of

much larger fragments of processing to a single RTOS task, allowing the

event queue mechanism to thread together the activities of many state

machines and the dispatch of many asynchronous service calls via service

handles – all in a single RTOS task. So the use of MDA/translation reduces

the number of tasks needed to effectively deploy a system.

While these benefits of MDA/translation can dramatically reduce the need for

many separate RTOS tasks at the implementation level, in MDA systems there

generally remains a need for two or more tasks. In addition to multiple tasks

running code generated from analysis, there can be one or more tasks with

realized (hand written) code from legacy or other sources.

So where does this leave us? We have eliminated the freewheeling tendency

to proliferate tasks. So our need for inter-task synchronization mechanisms

Multi-Tasking Features for PathMATE Transformation Maps

2

is greatly reduced, and our run-time overhead is reduced. But often more

than one task is needed, even with the implementation opportunities afforded

by MDA and translation. What remains is the requirement to deploy relatively

large-scale system components to a small number of tasks. Pathfinder's

strategy is to focus on the domain as the basis of allocation.

The design alternatives described herein have a goal of providing the a level

of tasking flexibility while minimizing task locking overhead/requirements,

and preserving the implementation independence of the analysis models.

3. Design Approach

The execution of generated implementation from MDA models – called "OOA

Processing" - revolves around the central execution control mechanism PfdTask

(SW_Task in the C design). This contains Incident queues, regulating the dispatch of

Events and ServiceHandles in the course of OOA Processing. Everything that

happens in an OOA Processing task is a response to an Incident - Event or

ServiceHandle. Of course these impulses causes many other things to happen, but

from an implementation architecture perspective everything is driven from them.

Incident
queue

process Event or
ServiceHandle

PfdTask
(provides

executive control)

dequeue

enqueue

dispatch

Figure 1: Data and Control Flow within OOA Processing Task

By providing an intertask contention mechanism on the Incident queue (called a

critical section, with implementations for all supported platforms), two or more tasks

running OOA Processing can interact through the protected exchange of Incidents.

Multi-Tasking Features for PathMATE Transformation Maps

3

Incident
queue

process Event or
ServiceHandle

PfdTask
(provides

executive control)

dequeue

enqueue

dispatch

Task-safe
Access

Incident
queue

process Event or
ServiceHandle

PfdTask
(provides

executive control)

dequeue

enqueue

dispatch

Task-safe
Access

Task A (OOA Processing) Task B (OOA Processing)

enqueue
(inter-task)

enqueue
(inter-task)

Figure 2: Two OOA Processing Tasks

In addition, realized code in other tasks can interact with a OOA Processing task by

using provided PfdTask/SW_Task methods to add Incidents (generally

ServiceHandles to domain services) to that task's Incident queue.

Incident
queue

process Event or
ServiceHandle

PfdTask
(provides

executive control)

dequeue

enqueue

dispatch

Task-safe
Access

Task A (OOA Processing) Task C (realized code)

realized module

enqueue
(inter-task)

Figure 3: A Realized Task Communicating with an OOA Processing

Task

Multi-Tasking Features for PathMATE Transformation Maps

4

Today all the base mechanisms exist to support the basic OOA Processing and

protected intertask sharing of Incidents. What is missing is the ability to readily

allocate subsets of an MDA system to individual separate tasks. The features

described below introduce increasing extensions to these base capabilities.

4. Capabilities

This document outlines three levels of support of multi-task capabilities. At the

base level, one or more modeled domains are allocated to a specific task. The next

level allocates individual elements within the domain (domain services and classes)

to tasks that may not be the base domain’s task. Finally, mechanisms can be used

to dynamically execute domain services and classes in new RTOS tasks - created on

the fly.

Task Labels

Tasks are identified by the following system:

• SYS_TASK_ - this prefix is used to identify all tasks labels.

• SYS_TASK_ID_MAIN – This is the default task, and anything not explicitly

allocated to another task will run in this task. In multi-processor systems, all

processors have a SYS_TASK_ID_MAIN.

• SYS_TASK_ANY – This identifies that this model element is not allocated to a

single task, and can run locally in any task that calls/invokes it.

Domain Allocation

One or more modeled domains can be allocated to a specific RTOS task. This

allocation is fixed at translation (code generation) time, and the tasks will be

configured at startup. It is assumed that the SYS_TASK_ID_MAIN task will

be one of the tasks used - it is the default task for any domain. System level

initialization is run in this task.

As an example, let's assume we will deploy the CarShuffle system onto two

tasks – the SYS_TASK_ID_MAIN task for user interface activities, and a

higher priority SYS_TASK_ID_CONTROLLER task for vehicle/motor controlling

functions. Our allocation of domains to tasks is:

domain prefix TaskID

MotorControl MC SYS_TASK_ID_CONTROLLER

OperatorInterface OI SYS_TASK_ID_MAIN

ScreenInterface SI SYS_TASK_ID_MAIN

SoftwareMechanisms SW
SYS_TASK_ANY

TextLabels TL SYS_TASK_ID_MAIN

VehicleControl VC SYS_TASK_ID_CONTROLLER

VehicleHousing VH SYS_TASK_ID_CONTROLLER

Figure 4: Domain Allocation Table for CarShuffle

Multi-Tasking Features for PathMATE Transformation Maps

5

SYS_TASK_MAIN SYS_TASK_CONTROLLER

SWMC

VCVH

TL

SI OI

SW
Incident
queue

Task-safe
Access

Incident
queue

Task-safe
Access

Figure 5: CarShuffle Task Composition

Analysis Property Extensions

A domain property TaskID controls this allocation. The values are:

- SYS_TASK_ID_MAIN, indicating this domain runs in the primary

OOA Processing task (default)

- SYS_TASK_ANY, indicating this domain runs whatever task it is

called from (note: any Event GENERATION or IncidentHandle

(ServiceHandle) CALLs to this domain made from a realized task

will be dispatched to the SYS_TASK_ID_MAIN task)

- <any valid project-specific predefined task id>

For any domain with a TaskID that is not SYS_TASK_ID_MAIN or

SYS_TASK_ANY, the domain property TaskPriority may be set. The values for

task priority are:

- SYS_TASK_PRIORITY_HIGHEST

- SYS_TASK_PRIORITY_HIGHER

- SYS_TASK_PRIORITY_NORMAL (default)

- SYS_TASK_PRIORITY_LOWER

- SYS_TASK_PRIORITY_LOWEST

If more than one domain is allocated to the same non-MAIN/non-ANY task,

their specified priorities must be the same.

The actual effect these priorities have is specific to the task scheduling

support available in your target execution environment.

Multi-Tasking Features for PathMATE Transformation Maps

6

Translation Features

The generated code automatically provides all elements needed to manage all

aspects of task startup and use.

Initialization: The task topology is determined by a survey of the TaskID for

each domain. A startup function is generated to start each task. The startup

processing for each task is determined by the domain init actions for the

domains allocated to each task. The system level init action is started in

SYS_TASK_ID_MAIN.

ServiceHandle: The current task identifier is specified during the creation of

service handles. When a service handle is CALLed, it is routed to the Incident

queue for the proper task.

Domain Service Invocation: When a domain service invocation is

translated from PAL, the task id for the target domain will be compared to the

calling domain's task id. If they are the same, a synchronous

method/function invocation will be generated. If they are different, code will

be generated to automatically create a service handle and route it to the

Incident queue for the proper task. Please note – inter-task invocation of

services with output parameters or a return value is not supported.

Mechanisms Features

Service Handle: The PfdServiceHandle (SW_Incident in C) class carries a

task id.

Startup: The generated System::Run() method (or System_Run() function in

C) is extended to automatically invoke the appropriate generated task

initialization code.

Analysis Implications

This feature uses the domain boundaries already established and enforced by

MDA, so there is little practical impact on the analyst. The most significant

constraint is all domain services to be invoked across task boundaries must

be of asynchronous form – have no output parameters or return value.

Multi-Tasking Features for PathMATE Transformation Maps

7

Domain Service Allocation

For designers requiring a finer level of control, support is provided to allocate

distinct domain services to specified tasks. This allocation is fixed at

translation (code generation) time, and the tasks are configured and started

at system startup.

An active class instance is allocated to the task it was created in. If it was

statically initialized, it is allocated to the domain's default task. This only

affects the Incident queue that Events destined for this instance are queued

in.

As an example let's revisit the CarShuffle system, and respond to a new

requirement: for safety purposes all activities that potentially support

evacuation in case of building fire must be run in the

SYS_TASK_ID_EVACUATION task. This task is established at startup time at

a higher priority (this is done by project-specific realized code and not

through any model properties or analysis calls), and remains available for

evacuation activities. The VehicleControl Backout service has been identified

as a SAFETY capability, and must be allocated to this new task. Our

allocation of domains to tasks would be the same as the previous example,

except MC is now allocated to ANY to allow it to be used in both CONTROLLER

and EVACUATION.

domain prefix TaskID

MotorControl MC SYS_TASK_ANY

OperatorInterface OI SYS_TASK_ID_MAIN

ScreenInterface SI SYS_TASK_ID_MAIN

SoftwareMechanisms SW SYS_TASK_ANY

TextLabels TL SYS_TASK_ID_MAIN

VehicleControl VC SYS_TASK_ID_CONTROLLER

VehicleHousing VH SYS_TASK_ID_CONTROLLER

Figure 6: Domain Allocation Table for CarShuffle with EVACUATION

Task

The base domain allocation is supplemented by this domain service allocation:

service TaskID

VC:Backout SYS_TASK_ID_EVACUATION

Figure 7: Domain Service Allocation Table for CarShuffle with

EVACUATION Task

 These allocations would result in this task composition:

Multi-Tasking Features for PathMATE Transformation Maps

8

SYS_TASK_MAIN SYS_TASK_CONTROLLER

SWMC

VC - (except for
VC:BackupVH

TL

SI OI

SW
Incident
queue

Task-safe
Access

Incident
queue

Task-safe
Access

SYS_TASK_EVACUATION

SWMC

VC:Backup

Incident
queue

Task-safe
Access

Figure 8: CarShuffle Task Composition with EVACUATION Task

(All extensions below assume the completion of the Domain Allocation feature

as a base.)

Analysis Property Extensions

The domain service property TaskID defines which task this service is

allocated to. The values are:

- SYS_TASK_ID_MAIN, indicating the primary OOA Processing task

- SYS_TASK_ANY, indicating this domain runs whatever task it is

called from (note: any Event GENERATION or IncidentHandle

(ServiceHandle) CALLs to this domain made from a realized task

will be dispatched to the SYS_TASK_ID_MAIN task)

- <any valid predefined task id>

Multi-Tasking Features for PathMATE Transformation Maps

9

The domain property TaskID specified the default TaskID for a domain

service.

Translation Features

Service Handle: If a ServiceHandle is created for a domain service that has

a TaskID specified, this id will be used. Otherwise the current task identifier

will be specified.

Domain Service Invocation: When a domain service invocation is

translated from PAL, the task id for the target domain is compared to the

calling domain's task id. If they are the same, a synchronous

method/function invocation is generated. If they are different, code is

generated to create a service handle and route it to the Incident queue for

the proper task.

Event Generation: When an event is generated, the task id for the event is

filled in from the task id of the destination instance.

Class and Association Accessor Contention Resolution: Class and

association accesses are examined for potential intertask conflict, and if this

potential is detected, a transformation-time report is generated to identify

these cases.

Mechanisms Features

Incident: The PfdIncident class is extended to carry a task id.

ActiveClass: The PfdActiveClass is extended to carry a task id.

Analysis Implications

While this incremental capability may not seem like a big change relative to

the allocation of a complete domain to a task, it opens the door for intertask

access issues within a domain. Since any generated mechanisms for intertask

access contention may incur substantial accumulated run-time overhead,

analysts should reduce intertask contentions and try to use domain services

and events for intertask activities.

Multi-Tasking Features for PathMATE Transformation Maps

10

Class Allocation

Following the release of Domain Allocation capabilities (either as an

alternative to, or in conjunction with Domain Service Allocation), support is

provided to allocate distinct active classes to specified RTOS tasks. This

allocation is fixed at translation (code generation) time, and the tasks are at

startup.

If a task is specified for an active class via TaskID, each instance of the class

is allocated to the specified task. If no TaskID is specified for an active class,

it is allocated to the domain's default task. This only affects the Incident

queue that Events destined for this instance are queued in – all class services

are run in the task they are invoked from.

As an example let's revisit the CarShuffle system safety requirement and now

we allocate the VehicleHousing class to the SYS_TASK_ID_EVACUATION task.

Our allocation of domains to tasks would be the same as the previous

example, except both VC and MC are now allocated to SYS_TASK_ANY to

allow them to be used in both CONTROLLER and EVACUATION.

domain prefix TaskID

MotorControl MC SYS_TASK_ANY

OperatorInterface OI SYS_TASK_ID_MAIN

ScreenInterface SI SYS_TASK_ID_MAIN

SoftwareMechanisms SW SYS_TASK_ANY

TextLabels TL SYS_TASK_ID_MAIN

VehicleControl VC SYS_TASK_ANY

VehicleHousing VH SYS_TASK_ID_CONTROLLER

Figure 9: Domain Allocation Table for CarShuffle with

EVACUATION Task (alternative)

The base domain allocation is supplemented by this class allocation:

service TaskID

Vh:Car SYS_TASK_ID_EVACUATION

Figure 10: Class Allocation Table for CarShuffle with

EVACUATION Task

 These allocations result in this task composition:

Multi-Tasking Features for PathMATE Transformation Maps

11

SYS_TASK_MAIN SYS_TASK_CONTROLLER

SWMC

VH - (except for
class VC:Car)VC

TL

SI OI

SW
Incident
queue

Task-safe
Access

Incident
queue

Task-safe
Access

SYS_TASK_EVACUATION

Incident
queue

Task-safe
Access

SWMC

VC:CarVC

Figure 11: CarShuffle Task Composition with EVACUATION Task

(class-based)

Analysis Property Features

The class property TaskID defines which task this service is allocated to. The

values are:

- SYS_TASK_ID_MAIN, indicating the primary OOA Processing task

- SYS_TASK_ANY, indicating this class runs whatever task it is called

from (note: any Event GENERATION or IncidentHandle

(ServiceHandle) CALLs to this domain made from a realized task

will be dispatched to the SYS_TASK_ID_MAIN task)

- <any valid predefined task id>

Multi-Tasking Features for PathMATE Transformation Maps

12

The domain property TaskID will provide the default value if no value is

specified for the domain service property.

Translation Extensions Features

Service Handle: If a ServiceHandle is created for a class service for a class

that has a TaskID specified, this id is used. Otherwise the current task

identifier is specified.

Event Generation: When an event is generated, the task id for the event is

filled in from the task id of the destination instance.

Class and Association Accessor Contention Resolution: Class and

association accesses are examined for potential intertask conflict, and if this

potential is detected, a transformation-time report is generated to identify

these cases.

Mechanisms Extensions

Incident: The PfdIncident class is extended to carry a task id.

ActiveClass: The PfdActiveClass is extended to carry a task id.

Analysis Implications

While this incremental capability may not seem like a big change relative to

the allocation of a complete domain to a task, it opens the door for intertask

access issues within a domain. Since any generated mechanisms for intertask

access contention may incur substantial accumulated run-time overhead,

analysts should reduce intertask contentions and try to use domain services

and events for intertask activities.

Multi-Tasking Features for PathMATE Transformation Maps

13

Dynamic Domain Service Allocation

(Please review the Dynamic tasking technical note for details on how to

create/start and use RTOS tasks on the fly.)

