
©2008 by Pathfinder Solutions

Inter-Domain Data Mapping Using

Implicit Bridging

Version 0.8

December 30, 2002

PathMATE Technical Notes

Pathfinder Solutions LLC

33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com

888-662-7284

 ii

Table Of Contents

1. Introduction... 1

2. External Message Interface (EMIF) .. 1

Description ... 1

Implementation Strategy ... 1

Analysis Properties .. 2

3. Example: .. 3

Domain Service ... 3

Class Instance Creation .. 3

Sample Generated Dispatcher ... 4

4. Summary ... 5

Inter-Domain Data Mapping Using Implicit Bridging

1

1. Introduction

This technical note explains the basic strategy for mapping data elements between a

realized external message interface domain (EMIF) and analyzed client domains. An

implicit bridging strategy is employed, using extended translation properties to

specify the connection between message data fields and analysis data atoms.

The technical note summarizes general capabilities independent of any specific

application or message set, and is expected to form a starting point for project-

specific bridge mapping.

2. External Message Interface (EMIF)

Description

Many embedded systems employ an external message interface domain

(EMIF) as an interface between the analyzed application and other external

software elements. These messages may come from external software

elements in the form of requests for the application to perform some action,

or as collections of data being supplied to the application. These requests and

data are forwarded by EMIF to the appropriate application domains. This

technical note only covers the inbound aspects of this type of mapping – the

customer project may extend portions of these bridge mappings

symmetrically for outbound messages.

Implementation Strategy

It is assumed that the messages and structures are defined in C/C++ header

files, and corresponding message support functions a provided in some kind

of library. It is expected that some form of existing or other realized code

services required inter-task, inter-process, and/or inter-processor

communication.

A common and effective Structured Design for EMIF processing is to separate

the message processing into two threads of control. One handles the

reception and transmission of the incoming and outgoing messages using

realized routines and the other executes within the thread that services its

analyzed client domains, providing external–to-internal data structure

conversion and the dispatching of calls to client domain services. The actual

message buffer is a shared structure, using project-specific (realized) inter-

task protection mechanisms.

The routing of data is achieved using a combination of two strategies. One

strategy uses client domain services to pass received message data to the

client domains, and the other creates instances of client objects and then

notifies the client of the creation.

In order to generate the necessary code for the

conversion/formatting/dispatching of specific messages, "coloring" properties

are used in conjunction with EMIF-specific templates. Client domains wishing

to receive notification of, and/or data from an external message can specify a

domain service to handle the information contained in the desired external

message by an EMIF “coloring” property that specifies the message identifier

Inter-Domain Data Mapping Using Implicit Bridging

2

that service handles. The parameters of that domain service are colored with

properties linking them to the message data items of interest.

In the case of a large set of structured data, it is presumed that EMIF’s client

domain has modeled a UML class to store such information. This class is

“colored” with an EMIF message type property identifying the corresponding

message identifier, and the class attributes are tagged with the data items of

interest.

To maintain the integrity of data being passed into the application software,

the client project can hand-write any data conversion functions needed to

change from message units to application units. These functions can be

abstracted as EMIF services. The use of these services can be specified

directly in the "coloring" used to map the message data field to the analysis

data atom (parameter or attribute).

Analysis Properties

There are 3 analysis properties that EMIF clients will use:

EmifRmsgType: (applies to Class and Domain Service)

Correlates a message type with the class to be created, or the service to be

invoked.

- Specifies the message type.

- On a class this property indicates that upon receipt of this message type a

set of instances of this class will be created (requires

EmifRmsgElementCount to be set, indicating the number of classes to

be created).

- On a domain service this indicates this domain service is to be called when

this message type is received.

EmifRmsgElementCount: (applies to Class and Domain Service)

For messages with arrays of data, this identifies the message data field that

indicates how many elements are in the message.

- On a class this property indicates the message field containing the number

of instances to be created. If count is “” one instance is created.

- On a domain service this property indicates the message field containing

the number of times this service is to be called (iterating over a set of

parameter values). If count is “” the service is invoked once.

EmifRmsgElementField: (applies to Attribute and Domain Service

Parameter)

Correlates a message structure data field with an analysis data atom.

- On a class attribute this indicates the message field that supplies this

attribute's value - the actual parameter to the instance create call.

For any class that specifies a EmifRmsgType, every attribute requires a

value for EmifRmsgElementField, or a default value.

- On a domain service parameter this indicates the message field that

supplies this parameter's value (the actual parameter to the domain

service call).

For any service that specifies a EmifRmsgType, every parameter

requires a value for EmifRmsgElementField.

Inter-Domain Data Mapping Using Implicit Bridging

3

- This field may or may not contain an inline call to one of the EMIF

conversion routines to convert the incoming data type.

3. Example:

The following examples assume an unspecified APP client domain, and various

message structures to be received by the EMIF domain.

Domain Service

The APP domain wants to map any updates to the tree farming mode from

the MSGTYPE_TFRM_MODE message to a call to the domain service

APP:UpdateTreeFarmingMode:

APP:UpdateTreeFarmingMode: This service selects updates the farming mode.

in: farming_mode (sys_tree_farming_mode_e): Indicates which type of tree
farming mode is in use.

Message Structure for MSGTYPE_TFRM_MODE:
// MSGTYPE_TFRM_MODE:
struct emif_message_tree_farming_mode_t
{
 sys_tree_farming_mode_e treefrm_mode
} emif_message_tree_farming_mode_t;

The APP:UpdateTreeFarmingMode domain service has the property:
EmifRmsgType = "MSGTYPE_TFRM_MODE"

The farming_mode service parameter has the property:
EmifRmsgElementField = "msg_buf->treefrm_mode"

(Please note: use of the base pointer "msg_buf" above is based on an

assumption about the implementation of the EMIF message dispatcher.)

Class Instance Creation

In this example, class instances are created and then a domain service is

called. An array of message elements is being iterated over, and a

conversion service is to map message data fields from one type to another.

Assume the following UML class in the APP domain:

NewP lanting

treeType : species_e
plantingDate : sys_date_t
plotCoordX : coord_t
plotCoordY : coord_t

The APP domain would like instances of NewPlanting to be created when the

MSGTYPE_NEW_PLANTINGS message is received. However, coordinates are

externally conveyed with data fields of type double, which require conversion

to the coord_t datatype by the domain service coord_t

EMIF:DoubleToCoord(double). Once these instances are created, then the

domain service APP:NewPlantingsInPlace() should be called.

Message Structures for MSGTYPE_NEW_PLANTINGS:

Inter-Domain Data Mapping Using Implicit Bridging

4

// Single planting:
struct emif_message_new_planting_t
{
 species_e tree_type;
 sys_date_t planting_date;
 double x, y;
} emif_message_new_planting_t;

// MSGTYPE_NEW_PLANTINGS:
struct emif_message_new_planting_set_t
{
 int planting_count; // This is the number of parameters actually planted
 struct emif_message_new_planting_t plantings[MAX_PLANTING_GROUP_SIZE];
} emif_message_new_planting_set_t;

The APP:NewPlanting class has the properties:
EmifRmsgType = "MSGTYPE_NEW_PLANTINGS "

EmifRmsgElementCount = "msg_buf->planting_count"

Its attributes has the properties:
treeType: EmifRmsgElementField = "msg_buf->plantings[index].tree_type"

plantingDate: EmifRmsgElementField = "msg_buf->plantings[index].planting_date"

plotCoordX: EmifRmsgElementField = "EMIF:DoubleToCoord (msg_buf->plantings[index].x)"

 plotCoordY: EmifRmsgElementField = "EMIF:DoubleToCoord (msg_buf->plantings[index].y)"

 (Please note: use of the set iteration variable "index" above is based on an

assumption about the implementation of the EMIF message dispatcher.)

The APP:NewPlantingsInPlace domain service will have the property:
EmifRmsgType = " MSGTYPE_NEW_PLANTINGS "

Sample Generated Dispatcher

The examples above assume the following realized message definition:

struct emif_message_type_t
{
 message_type_e message_type;

union message_body
{

 struct emif_message_tree_farming_mode_t mode_message;
struct emif_message_new_planting_set_t planting_message;

};
} emif_message_type_t;

and result in the generation of the following dispatcher function (C example):

bool_t EMIF_DispatchMessage(emif_message_type_t *base_buffer)
{
 bool_t retval = TRUE;

 // Switch the recognized types
 switch (base_buffer->message_type)

{
 case MSGTYPE_TFRM_MODE:
 {
 // Pull out this message
 struct emif_message_tree_farming_mode_t *msg_buf =
 &(base_buffer->mode_message);

 // Invoke the requested domain service
 APP_UpdateTreeFarmingMode(msg_buf->treefrm_mode);

Inter-Domain Data Mapping Using Implicit Bridging

5

 }
 break;

 case MSGTYPE_NEW_PLANTINGS:
 {

int index;
 // Pull out this message
 struct emif_message_new_planting_set_t *msg_buf =
 &(base_buffer->planting_message);

 // Created the requested instances

for (index = 0; index < msg_buf->planting_count; index++)
{
 APP_NewPlanting_create(
 msg_buf->->plantings[index].tree_type,

msg_buf->plantings[index].planting_date,
EMIF:DoubleToCoord (msg_buf-

>plantings[index].x),
EMIF:DoubleToCoord (msg_buf-

>plantings[index].y));
}

 // Invoke the requested domain service
 APP_NewPlantingsInPlace();
 }
 break;

 default:
 retval = FALSE;
};
return (retval);

}

The above dispatcher would be called from realized code whenever an

external message is received.

4. Summary

The capabilities outlined in this document are general in nature, and the details of

both the property names/values, and the resulting generated dispatcher code is

subject to change in response to project need.

