
©2008 by Pathfinder Solutions

Using the Basic Type Fine-Grained

Time

Version 1.1

September 16, 2007

PathMATE Technical Notes

Pathfinder Solutions LLC

33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com

888-662-7284

 ii

Table Of Contents

1. Introduction... 1

Using the Basic Type Fine-Grained Time

1

1. Introduction

This Tech Note describes the basic type called FineGrainedTime. This type stores

time with nanosecond granularity. It is currently available for the C++ maps. It can

be used as an attribute value type, as a service parameter type, or as a local

variable.

2. Modeling

The basic type FineGrainedTime can be used as an attribute on a class, as a

parameter to a service, or as a local variable in action language. If uninitialized, its

initial value will be zero nanoseconds. In action language you would declare a

variable “duration” with type FineGrainedTime in the following way:

FineGrainedTime duration; //initial value is 0

Assignment

Assignment between Integers, Reals, and FineGrainedTimes, and

GenericValues which hold an Integer, Real and FineGrainedTime is freely

permitted. Assigning to an FineGrainedTime type assumes the values are in

milliseconds.

FineGrainedTime fgt = 120.45; // 120 ms, 450000 ns

FineGrainedTime fgt2 = -1500; // -1.5 seconds

FineGrainedTime fgt3 = 3000000000; // 3,000,000 seconds:

// if this results in a compile error (because the

// constant is a long), use a double constant as fo llows:

FineGrainedTime fgt4 = 3000000000.0; // 3,000,000 seconds

FineGrainedTime may also be converted to and from a string. The value is

represented in milliseconds with 6 decimal places representing nanoseconds.

String timeAsFgt = fgt; // timeAsFgt=”0.000120” 12 0 ns

FineGrainedTime fgt2 = “5.000120” // 5 ms, 120 ns

Use the SoftwareMechanisms service SW:GetFineGrainedTime to get the

current time in a FineGrainedTime variable.

FineGrainedTime now = SW:GetFineGrainedTime();

Arithmetic

Expressions with arithmetic operators +, -, *, and / are supported with the

FineGrainedTime data type. The modulo operator, %, is also supported for

FineGrainedTime data types. The resulting expression type is

FineGrainedTime.

FineGrainedTime fgt = 120.45; // 120 ms, 450000 ns

Using the Basic Type Fine-Grained Time

2

FineGrainedTime fgt2 = fgt / 2; // fgt2 = 60 ms, 2 25000 ns

FineGrainedTime fgt3 = fgt * 2; // fgt3 = 240 ms, 900000 ns

Unary

Operator
Type Result Description

+ FGT FGT Returns the input value
- FGT FGT Returns the negative of the input

value

Left-Hand

Type

Binary

Operator

Right-Hand

Type
Result Description

FGT + FGT FGT Sum of the two times.

FGT + Integer FGT Sum of left-hand side and the

right-hand side converted to

Fine-Grained Time.

Integer + FGT FGT Sum of left-hand side

converted to Fine-Grained Time

and the right-hand side.

FGT + Real FGT Sum of left-hand side and the

right-hand side converted to

Fine-Grained Time.

Real + FGT FGT Sum of left-hand side

converted to Fine-Grained Time

and the right-hand side.

FGT + String String Converts the left-hand side to

a String in the form “m.n” and

concatenates to the right-hand

string.

String + FGT String Converts the right-hand side to

a String in the form “m.n” and

concatenates to the left-hand

string.

FGT - FGT FGT Difference of the two times.

FGT - Integer FGT Difference of left-hand side and

the right-hand side converted

to Fine-Grained Time.

Integer - FGT FGT Difference of left-hand side

converted to Fine-Grained Time

and the right-hand side.

FGT - Real FGT Difference of left-hand side and

the right-hand side converted

to Fine-Grained Time.

Real - FGT FGT Difference of left-hand side

converted to Fine-Grained Time

and the right-hand side.

Using the Basic Type Fine-Grained Time

3

Left-Hand

Type

Binary

Operator

Right-Hand

Type
Result Description

FGT * FGT Real Product of two Fine-Grained

Time values, interpreted as

Reals in milliseconds. CRRS

uses time-squared for

acceleration calculations, so we

need this operator. The result

can be a Real, however. It does

not make sense as a Fine-

Grained Time because the units

are ms^2.

FGT * Integer FGT Multiplies the seconds,

milliseconds, and nanoseconds

of the left-hand side by the

right-hand side.

Integer * FGT FGT Multiplies the seconds,

milliseconds, and nanoseconds

of the right-hand side by the

left-hand side.

FGT * Real FGT Multiplies the seconds,

milliseconds, and nanoseconds

of the left-hand side by the

right-hand side.

Real * FGT FGT Multiplies the seconds,

milliseconds, and nanoseconds

of the right-hand side by the

left-hand side.

FGT / FGT Real Ratio of two Fine-Grained Time

values, interpreted as Reals in

milliseconds.

FGT / Integer FGT Divides the seconds,

milliseconds, and nanoseconds

of the left-hand side by the

right-hand side.

FGT / Real FGT Divides the seconds,

milliseconds, and nanoseconds

of the left-hand side by the

right-hand side.

Integer / FGT Real Divides the left-hand integer by

the right-hand side, treating it

as a Real value in milliseconds.

It does not make sense as a

Fine-Grained Time because the

units are 1/ms.

Using the Basic Type Fine-Grained Time

4

Left-Hand

Type

Binary

Operator

Right-Hand

Type
Result Description

Real / FGT Real Divides the left-hand integer by

the right-hand side, treating it

as a Real value in milliseconds.

It does not make sense as a

Fine-Grained Time because the

units are 1/ms.

FGT % FGT FGT The reminder from dividing the

left-hand side by the right-

hand side.

FGT % Integer FGT The reminder from dividing the

left-hand side by the right-

hand side.

Comparison Operators

Comparisons operators, >, >=, <, <=, ==, and != between Integers, Reals,

GenericValues, and FineGrainedTimes are performed in units of milliseconds on a

FineGrainedTime type. An Integer or a Real is converted to a FineGrainedTime

before the logical operator is performed.

FineGrainedTime fgt = 120.45; // 120 ms, 450000 ns

(fgt == 120.45) // yields TRUE

Left-Hand

Type

Binary

Operator

Right-Hand

Type
Result Description

FGT == FGT Boolean TRUE if the values are the

same

FGT == Integer Boolean TRUE if the right-hand side

converted to Fine-Grained Time

equals the left-hand side.

Integer == FGT Boolean TRUE if the left-hand side

converted to Fine-Grained Time

equals the right-hand side.

FGT == Real Boolean TRUE if the right-hand side

converted to Fine-Grained Time

equals the left-hand side.

Real == FGT Boolean TRUE if the left-hand side

converted to Fine-Grained Time

equals the right-hand side.

FGT != FGT Boolean FALSE if the values are the

same

FGT != Integer Boolean FALSE if the right-hand side

converted to Fine-Grained Time

equals the left-hand side.

Using the Basic Type Fine-Grained Time

5

Left-Hand

Type

Binary

Operator

Right-Hand

Type
Result Description

Integer != FGT Boolean FALSE if the left-hand side

converted to Fine-Grained Time

equals the right-hand side.

FGT != Real Boolean FALSE if the right-hand side

converted to Fine-Grained Time

equals the left-hand side.

Real != FGT Boolean FALSE if the left-hand side

converted to Fine-Grained Time

equals the right-hand side.

FGT > FGT Boolean TRUE if the left-hand side is

greater than the the right-hand

side.

FGT > Integer Boolean TRUE if the left-hand side is

greater than the the right-hand

side converted to Fine-Grained

Time.

Integer > FGT Boolean TRUE if the left-hand side

converted to Fine-Grained Time

is greater than the the right-

hand side.

FGT > Real Boolean TRUE if the left-hand side is

greater than the the right-hand

side converted to Fine-Grained

Time.

Real > FGT Boolean TRUE if the left-hand side

converted to Fine-Grained Time

is greater than the the right-

hand side.

FGT >= FGT Boolean TRUE if the left-hand side is

greater than or equal to the

the right-hand side.

FGT >= Integer Boolean TRUE if the left-hand side is

greater than or equal to the

the right-hand side converted

to Fine-Grained Time.

Integer >= FGT Boolean TRUE if the left-hand side

converted to Fine-Grained Time

is greater than or equal to the

the right-hand side.

FGT >= Real Boolean TRUE if the left-hand side is

greater than or equal to the

the right-hand side converted

to Fine-Grained Time.

Real >= FGT Boolean TRUE if the left-hand side

converted to Fine-Grained Time

is greater than or equal to the

the right-hand side.

Using the Basic Type Fine-Grained Time

6

Left-Hand

Type

Binary

Operator

Right-Hand

Type
Result Description

FGT < FGT Boolean TRUE if the left-hand side is

less than the the right-hand

side.

FGT < Integer Boolean TRUE if the left-hand side is

less than the the right-hand

side converted to Fine-Grained

Time.

Integer < FGT Boolean TRUE if the left-hand side

converted to Fine-Grained Time

is less than the the right-hand

side.

FGT < Real Boolean TRUE if the left-hand side is

less than the the right-hand

side converted to Fine-Grained

Time.

Real < FGT Boolean TRUE if the left-hand side

converted to Fine-Grained Time

is less than the the right-hand

side.

FGT <= FGT Boolean TRUE if the left-hand side is

less than or equal to the the

right-hand side.

FGT <= Integer Boolean TRUE if the left-hand side is

less than or equal to the the

right-hand side converted to

Fine-Grained Time.

Integer <= FGT Boolean TRUE if the left-hand side

converted to Fine-Grained Time

is less than or equal to the the

right-hand side.

FGT <= Real Boolean TRUE if the left-hand side is

less than or equal to the the

right-hand side converted to

Fine-Grained Time.

Real <= FGT Boolean TRUE if the left-hand side

converted to Fine-Grained Time

is less than or equal to the the

right-hand side.

Mathematical Expressions

The following mathematical expressions will be added to the Math domain:

Name Parameters Result Description

Math:tmin FGT, FGT FGT The minimum of the two input values.

Using the Basic Type Fine-Grained Time

7

Name Parameters Result Description

Math:tmin Integer, FGT FGT The minimum of the first parameter

converted to Fine-Grained Time and

the second parameter.

Math:tmin FGT, Integer FGT The minimum of the first parameter

and the second parameter converted

to Fine-Grained Time.

Math:tmin Real, FGT FGT The minimum of the first parameter

converted to Fine-Grained Time and

the second parameter.

Math:tmin FGT, Real FGT The minimum of the first parameter

and the second parameter converted

to Fine-Grained Time.

Math:tmax FGT, FGT FGT The maximum of the two input values.

Math:tmax Integer, FGT FGT The maximum of the first parameter

converted to Fine-Grained Time and

the second parameter.

Math:tmax FGT, Integer FGT The maximum of the first parameter

and the second parameter converted

to Fine-Grained Time.

Math:tmax Real, FGT FGT The maximum of the first parameter

converted to Fine-Grained Time and

the second parameter.

Math:tmax FGT, Real FGT The maximum of the first parameter

and the second parameter converted

to Fine-Grained Time.

Math:tabs FGT FGT The absolute value of the input value.

Delayed Events

FineGrainedTime and expressions returning fine grained time may be used in

a GENERATE AFTER statement.

FineGrainedTime fgt = 120; // 120 ms

GENERATE <event> AFTER (fgt * 2) TO (instance); // after 240ms

Nanosecond timers are not supported on all platforms. When a timeout

contains an interval less than 1 millisecond, the delayed event will be

delivered, but on platforms with millisecond timer resolution, the event will

arrive late.

Exception Handling

Exceptions for overflow, underflow and divide by zero are generated and can

be caught and handled using SW:RegisterForErrorGroup() with the group

SW_ERROR_GROUP_MECHANISMS. See error_codes.hpp in the

cpp/mechanisms directory for the error codes which can be generated for this

group of errors.

Using the Basic Type Fine-Grained Time

8

3. Marking

There are no special markings required to use the FineGrainedTime basic type.

4. Mechanisms/Realized Code

The basic type FineGrainedTime is implemented in the PathMATE mechanisms by the

class PfdFineGrainedTime which is defined in pfd_timer.hpp. This class previously

stored time in units of milliseconds, but has been modified to hold units of

nanoseconds.

The PfdDataContainer class, which is defined in datacont.hpp, has been modified to

be able to hold a FineGrainedTime value. This support was implementing using a

struct with fields for seconds and nanoseconds, rather than holding the

PfdFineGrainedTime class directly in order to avoid increasing the memory consumed

by the PfdDataContainer class.

5. Building/Deployment

The FineGrainedTime basic type does not behave differently in different

deployments. The class does have different implementations for integer

multiplication and division when the compile switch PAT

