
©2008 by Pathfinder Solutions 

 

 

 

 

 

 

 

XML Instance Loading 

Version 1.2 

May 13, 2008 

 

 

 

PathMATE Technical Notes 

 

Pathfinder Solutions LLC 

33 Commercial Drive, Suite 2 

 Foxboro, MA 02035 USA 

www.PathfinderMDA.com 

888-662-7284



 

 
ii

 

Table Of Contents 

1. Introduction .......................................................................................... 1 

Example ................................................................................................... 1 

Scope ...................................................................................................... 2 

2. Using the XML Instance Loading ........................................................... 3 

Introduction ............................................................................................. 3 

Marking the model .................................................................................... 3 

Model Transformation ................................................................................ 5 

Compiling and Linking ................................................................................ 5 

Creating an instance population XML file ...................................................... 5 

Invoking the instance loader ....................................................................... 6 

Example ................................................................................................... 7 



 XML Instance Loading 
 

 

 

 

1 

 

 

1. Introduction 

This technote describes the enhancements to the Java design to support the runtime 

loading of an instance population from an XML document.  The instance population 

allows object instances and associations linking the instances to be loaded at 

runtime. 

Example 

For example, given the fairly simple and straightforward class diagram: 

 

 

It should be possible to load instances of these classes at runtime using an XML 

document that looks like: 

 

<PreexistingInstances> 

 <OrderProcessing_Customer> 

  <customerNumber>1111</customerNumber> 

  <name>Fred</name> 

  <_x0040_id>1</_x0040_id> 

 </OrderProcessing_Customer> 

 <OrderProcessing_Order> 

  <orderNumber>11111</orderNumber> 

  <status>PENDING</status> 

  <_x0040_id>2</_x0040_id> 



 XML Instance Loading 
 

 

 

 

2 

 

 

  <A1_to_items> 

   <OrderProcessing_OrderItem> 

    <itemNumber>9876</itemNumber> 

    <quantity>2</quantity> 

    <unitPrice>9.99</unitPrice> 

    <_x0040_id>5</_x0040_id> 

   </OrderProcessing_OrderItem> 

  </A1_to_items> 

 </OrderProcessing_Order> 

 <OrderProcessing_Relation_A2> 

  <Order_id>2</Order_id> 

  <Customer_id>1</Customer_id> 

 </OrderProcessing_Relation_A2> 

</PreexistingInstances> 

Scope 

The enhancements consist of  both templates and mechanism support.  The 

templates generate: 

• a model-specific XML Schema Definition (XSD) file that describes the 

structure of the instance population data 

• a model-specific Java implementation of the XML loader support 

classes for each modeled class and association that can be expressed 

in the instance population. 

Supporting Java mechanisms (model-independent) are provided that use the 

Java SAX parser to drive the parsing and loading of the XSD file.  



 XML Instance Loading 
 

 

 

 

3 

 

 

2. Using the XML Instance Loading 

Introduction 

The XML instance loading support uses markings to generate additional 

supporting Java classes that know how to map XML elements to class and 

relationship instances.  The resulting instance loader class can then be 

invoked at runtime to process XML files containing instance populations. 

Marking the model 

The templates for XML loading are driven by properties applied to the model 

using the properties.txt file in the transformation working directory.  The 

markings controlling the transformation include: 

Marking Name Applies To Default Description 

XMLConstructorType System N/A This must be set to 

“SAX_JAVA” to enable the 

Java SAX-style loader.  

XMLSchemaGen System False This must be set to “True” to 

enable XML instance loading. 

XMLSchemaGen Object False This must be set to “True” to 

enable loading of instances of 

this object. 

XMLSchemaGen BinaryRel False This must be set to “True” to 

enable loading of instances of 

this relationship. 

ExcludeFromSchema Attribute FALSE Setting this marking to 

“TRUE” excludes an object’s 

attribute from the schema.  

The attribute will be assigned 

its default value when the 

instance is created.   

XMLSchemaParent Participant FALSE This marking is used to mark 

the parent participant in a 

parent/child relationship.  

Setting this value to “TRUE” 

causes the relationship to be 

expressed using hierarchical 

containment in the XML 



 XML Instance Loading 
 

 

 

 

4 

 

 

document. 

CustomXMLMarshaling Attribute <unset> Setting this attribute triggers 

specialized marshaling of the 

attribute as described below. 

CustomXMLMarshalingL

engthAttr 

Attribute <unset> Used in conjunction with 

CustomXMLMarshaling to 

name a class attribute that 

holds a length field for use by 

the custom marshaling 

support. 

CustomXMLEncoding Attribute <unset> Used to describe the 

encoding used to encode the 

value of a custom marshaled 

attribute. 

 

The CustomXMLMarshaling attribute is used to provide specialized handling of 

an attribute when loaded from the XML instance population file.  This marking 

is used in conjunction with the CustomXMLEncoding and 

CustomXMLMarhsalingLengthAttr markings to control the custom marshaling 

process.  The following table describes the custom marshalling options: 

 

CustomXMLMarshaling 

Marking 

Description 

IntegerVector The attribute is marshaled as an array of integers.  

The CustomXMLMarshalingLengthAttr marking holds 

the name of the class attribute defining the length of 

the array.  The integer vector is represented as a 

space-separated list of ASCII integers.  

DoubleVector The attribute is marshaled as an array of doubles.  

The CustomXMLMarshalingLengthAttr marking holds 

the name of the class attribute defining the length of 

the array.  The data can be marshaled in one of two 

ways.  If the CustomXMLEncoding marking is set to 

“ASCII”, the value holds a space-separate list of 

ASCII doubles.  Otherwise, the value holds a base-

64 encoded binary dump of the vector. 

DoubleMatrix The attribute is marshaled as a square matrix of 

doubles.  The CustomXMLMarshalingLengthAttr 



 XML Instance Loading 
 

 

 

 

5 

 

 

marking holds the name of the class attribute 

defining the dimension of sides of the matrix.  The 

data can be marshaled in one of two ways.  If the 

CustomXMLEncoding marking is set to “ASCII”, the 

value holds a space-separate list of ASCII doubles in 

row-major order.  Otherwise, the value holds a 

base-64 encoded binary dump of the matrix. 

Model Transformation 

Specify the appropriate markings in the properties.txt file.  Generate the java 

code using the PathMATE Java Transformation Map.  The schema file and any 

loading code will be automatically generated. 

Compiling and Linking 

The XML transformation map generates two distinct outputs: a XML Schema 

Definition that describes the structure of an instance population XML file and a 

Java source file/header file combination that implements the runtime instance 

loading using the Java SAX parser. 

The generated output files are as follows: 

Output File Description 

java/gc/<system_name>_preexisting.xsd The XML 

Schema 

Definition file 

describing the 

structure of an 

XML instance 

population 

java/gc/<system_name>/sys/<system_name>InstanceLoader.java The java 

implementation 

of the type-

specific 

instance loader 

classes. 

The generated java files depend on mechanism files that provide the Java 

SAX support.  These files are in the mechanisms.xml package.   

Creating an instance population XML file 

The generated XML Schema Definition describes the allowable structure of an 

XML instance population file.  To allow the XML parser to validate the instance 



 XML Instance Loading 
 

 

 

 

6 

 

 

population against the schema as it is parsed, a reference to the XSD should 

be included in the XML header as follows: 

<?xml version="1.0" encoding="UTF-8"?> 
<PreexistingInstances xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="gc\<system_name>_preexisting.xsd">  
</PreexinstingInstances> 

The example header uses a relative path from the XML file to the XSD file.  

This can be replaced by a full path in case the XSD file resides at a different 

location.  Using an XML editor that understands XML Schema Definitions, such 

as Altova’s XML Spy, will greatly assist in creating valid instance population 

files.  If an XSD compatible editor is not available, the Xerces SAX2Print utility 

can be used to ensure that the resulting XML file conforms to the schema 

definition.  Information on SAX2Print can be found in the Xerces 

documentation. 

Each leaf class in the source model that is marked with the “XMLSchemaGen” 

marking will have a corresponding element in the schema named with the 

convention <domain_prefix>_<class_name>.  These elements are used to 

define instances of the class within the document.  Each element must have 

child elements that describe the values of each attribute of  the class, unless 

the attribute is marked with the “ExcludeFromSchema” marking.  In addition, 

a special identifier attribute named _x0040_id must be supplied with a unique 

integral value.  This attribute identifies the instance within the XML file and is 

used to implement relationships between object instances. 

Relationships between instances can be expressed using relationship 

elements.  Relationship elements are named with the convention 

<domain_prefix>_Relation_A<relationship_number>.  The relationship 

elements  contain two child elements (three in the case of association class 

relationships) that identify the endpoints of the relationship.  The child 

elements refer to the endpoints using the value of the instance’s __x0040_id 

attribute. 

Alternatively, for relationships that have a participant marked with the 

“XMLSchemaParent” marking, the hierarchy of the XML document can be used 

to describe a parent/child relationship between two instances.  This results in 

a more natural way to express hierarchies of objects.  If a class participates in 

a relationships marked as a schema parent, it will allow child instances to be 

declared as nested elements in the schema.  This nesting can extend to an 

arbitrary depth.  Nested child objects are grouped under an XML element 

describing the relationship and role in order to allow reflexive parent/child 

relationships.  The naming convention used is: 

A<relationship_number>[_to_<role_name>].  The role name is used if the 

child end of the relationship specifies a role name, otherwise it is omitted.   

Invoking the instance loader 

The instance loader takes a well-formed and valid XML instance population 

and creates object and relationship instances at runtime.  The loader is 



 XML Instance Loading 
 

 

 

 

7 

 

 

invoked by creating a new instance of the <system_name>InstanceLoader 

class and invoking the loadPopulation() method on it. 

The public APIs exposed by the instance loader are as follows: 

<system_name>InstanceLoader(String filename, boolean validate) 

This is the main constructor of the instance loader class.  The file 

name of the XML instance population to load is passed in as the first 

parameter.  XSD validation can be controlled by the validate 

parameter the contructor – if set to false, no validation of the 

document will occur at parse time. 

boolean loadPopulation() 

Invokes the parser to load the instances described in the population.  

Returns true if successful, false if an error occurred during the parse.  

If false is return, the error description can be retrieved using the 

getLastError() method. 

String getLastError() 

Returns a string containing a description of the last error encountered 

by the population loader or null if no error was encountered.   

 Example 

To complete the example described in the introduction, the model must be 

marked to enable XML instance population support and the resulting instance 

loader must be exposed to the rest of the system. 

The domain chart for the full example is: 

 



 XML Instance Loading 
 

 

 

 

8 

 

 

The model is marked using the properties.txt file which contains the following 

markings: 

System,InstanceExample,ImplementationLanguage,cpp 
System,InstanceExample,XMLConstructorType,SAX_JAVA 
System,InstanceExample,XMLSchemaGen,True 
Object,InstanceExample.OrderProcessing.*,XMLSchemaGen,True 
BinaryRel,InstanceExample.OrderProcessing.*,XMLSchemaGen,True 
Participant,InstanceExample.OrderProcessing.A1.Order.order,XMLSchemaParent,TRUE 

These markings cause all the XML schema to contain all classes and 

relationships in the OrderProcessing domain.  In addition, the A1 relationship 

between Order and OrderItem marked as a parent/child relationship, allowing 

items to be expressed in the schema as children of the order. 

The instance loader is exposed through a new, realized, domain called 

RealizedHelper.  The domain chart for the realized domain is: 

 

 

 

The loadInstancePopulation() method is the most interesting one here (the 

rest are for printing strings and integers to the console).  The java 

implementation of the loadInstancePopulation service looks like: 

 

String RealizedHelper::loadInstancePopulation(String filename, boolean validate) 
{ 
 InstanceExampleInstanceLoader loader =  
                              new InstanceExampleInstanceLoader (filename, validate); 
 if (!loader.loadPopulation()) 
 { 
  return loader.getLastError(); 
 } 
 else 
 { 
  return ""; 
 } 
} 

The implementation instantiates the generated instance loader class and 

invokes the loadPopulation() method.  If it fails, the error message is 

returned, otherwise an empty string is returned indicating success. 



 XML Instance Loading 
 

 

 

 

9 

 

 

In the OrderProcessing domain, a new domain service is exposed called 

loadAndPrint().  It loads an instance population from a file specified in a 

parameter and prints out the resulting instances.  The PAL code that 

implements this service is: 

 

String errorMessage = RealizedHelper:loadInstancePopulation(instancePopulation, 
TRUE); 
IF (errorMessage != "") 
{ 
 RealizedHelper:PrintString("Error loading instance population: " + errorMessage); 
 RealizedHelper:PrintNewline(); 
 RETURN; 
} 
 
FOREACH customer = CLASS Customer 
{ 
 RealizedHelper:PrintString("Customer: " + customer.name + " ("); 
 RealizedHelper:PrintInteger(customer.customerNumber); 
 RealizedHelper:PrintString(")"); 
 RealizedHelper:PrintNewline(); 
  
 FOREACH order = customer->A2->Order 
 { 
  RealizedHelper:PrintString(" Order "); 
  RealizedHelper:PrintInteger(order.orderNumber); 
  RealizedHelper:PrintString(" status "); 
   
  IF (order.status == PENDING) 
  { 
   RealizedHelper:PrintString("Pending"); 
  } 
  ELSE IF (order.status == COMPLETED) 
  { 
   RealizedHelper:PrintString("Completed");    
  } 
  ELSE IF (order.status == CANCELLED) 
  { 
   RealizedHelper:PrintString("Cancelled"); 
  } 
   
  RealizedHelper:PrintNewline(); 
   
  FOREACH item = order->A1->OrderItem 
  { 
   RealizedHelper:PrintString("  Item "); 
   RealizedHelper:PrintInteger(item.itemNumber); 
   RealizedHelper:PrintString(" quantity "); 
   RealizedHelper:PrintInteger(item.quantity); 
   RealizedHelper:PrintNewline(); 
  } 
 } 
} 
 



 XML Instance Loading 
 

 

 

 

10 

 

 

Finally, for this example, the system’s initialization action was modified to 

retrieve the first command-line argument and invoke the loadAndPrint() 

service.  The code looks like: 

 

String populationFile = SoftwareMechanisms:GetCommandLineArg(0); 
 
IF (populationFile != "") 
{ 
 OrderProcessing:loadAndPrint(populationFile); 
} 
 

Running the resulting system with the instance population XML file described 

in the introduction produces the following output: 

 

Customer: Fred (1111) 
        Order 11111 status Pending 
                Item 9876 quantity 2 


