
©2008 by Pathfinder Solutions

PathMATE Transformation Maps

Mutex Controls

Version 0.2

June 7, 2006

PathMATE Technical Notes

Pathfinder Solutions LLC

33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com

888-662-7284

 ii

Table Of Contents

1. Introduction... 1

2. Feature Description ... 1

Specifying Mutex Controls - IntertaskMutex .. 1

AUTO ... 1

SINGLE .. 1

User-Specified .. 1

Applying the Controls .. 1

Domain IntertaskProtect .. 1

Domain Service IntertaskProtect ... 1

Class IntertaskProtectClassExtent ... 2

Class IntertaskProtectClassInstance .. 2

Association Control .. 2

State Pipelining ... 4

ReentrantMutex .. 4

Acquiring and Releasing Controls .. 4

Single Domain Controls - Domain Service ... 4

With Class and Association Controls ... 5

Appendix A – Generated Mutex Code.. 6

Appendix B – Why Multiple Mutexes Must Secured in a Group instead of

Inline ... 10

Deadly Embrace With Inline Mutexes ... 10

Action Called from Task A... 10

Action Called from Task B... 11

The Deadlock .. 11

No Deadlock With Grouped Mutexes .. 12

PathMATE Transformation Maps Mutex Controls

1

1. Introduction

This Technical Note describes intertask mutual exclusion ("mutex") control

mechanisms for the protection of analyzed domain contents generated by PathMATE

Transformation Maps.

2. Feature Description

Specifying Mutex Controls - IntertaskMutex

The domain IntertaskMutex property specifies what mutex control(s) may be

applied as required by IntertaskPortect settings. All mutexes are generated,

managed and used as singletons - one per process.

AUTO

The default value is AUTO, indicating no single domain mutex is to be used, and

if any Classes or Associations specify mutex control, that a specifically

generated control for that Class or Association will be used. If domain

IntertaskProtect == ALL, then this marking's AUTO value is overridden and

forced to SINGLE.

SINGLE

The value "SINGLE" specifies a single generated mutex control for the domain,

used for all accesses to the domain.

User-Specified

The user can also provide the name of a mutex control coming from a realized

source, which must resolve to a SW_ReentrantMutex_handle_t, available from

the compiler global name scope. Any realized file include files must be added to

sys_incl.h, and the control itself must be initialized and deconstructed manually

in realized code.

Applying the Controls

Code to secure and release mutex controls protects structures that are marked

with the set of IntertaskProtect properties.

Domain IntertaskProtect

By default, mutex controls are applied only as required by Domain Service,

Class and Association marking. Specifying "ALL" applies a single domain mutex

control entering and returning from all domain services, acting the same as if all

the domain's services specified their IntertaskProtect = "ON".

Domain Service IntertaskProtect

By default, no mutex controls are applied around a domain service. Specifying

"ON" applies a single domain mutex control entering and returning from this

domain service.

Specifying "SINGLE" will apply a domain service specific mutex when entering

and returning from this domain service.

PathMATE Transformation Maps Mutex Controls

2

Class IntertaskProtectClassExtent

Setting this to ALWAYS indicates a mutex control to protect the class extent

structures of this class is always applied.

The applied mutex control regulates the following accesses:

- CREATE

- DELETE

- FIND CLASS

- FOREACH CLASS

If the domain IntertaskMutex marking is AUTO, then a class extent mutex

control <class name>_classMutexControl is generated for each Class (one per
class per process – singleton).

Class IntertaskProtectClassInstance

Setting this to ALWAYS indicates a mutex control to protect this class' instance

structures is always applied.

The applied mutex control regulates accesses to class instance data members:

- Attribute read or write accesses

- FOREACH/WHERE or FIND/WHERE using the class’s attributes

- DELETE of the class instance

- State updating via state machine event transitions (if a class is allocated

to SYS_TASK_ANY).

- Association accesses from this participant structures.

If the domain IntertaskMutex marking is AUTO, then an instance mutex control

<class name>_instanceMutexControl is generated for each Class (one per
class per process – singleton).

Association Control

Setting this to ALWAYS indicates a mutex control to protect the association's

structures is always applied.

The applied mutex control regulates the following accesses:

- LINK or UNLINK (either explicitly through LINK or UNLINK action

language or implicitly upon deletion of one of the participating instances)

- FOREACH <nav> or FIND <nav>

If the domain IntertaskMutex marking is AUTO, then an association mutex

control A<association number>mutexControl generated for each Association
(one per association per process – singleton). This is the default level of

control, and is also provided when class IntertaskProtect == “ASSOCIATION”.

model element marking description

Domain IntertaskMutex
Allows the user to specify what mutex control is to be used to protect
this domain.

PathMATE Transformation Maps Mutex Controls

3

 AUTO (default)

No single domain mutex is to be used, and if any Classes or
Associations specify mutex control, that a specificially generated
control for that Class or Association will be used. If domain
IntertaskProtect == ALL, or if any of the domain's services have
IntertaskProtect == ON, then this marking's AUTO value is overridden
and forced to SINGLE.

 SINGLE

A single mutex control is generated for the domain (per process), and
whenever a mutex is needed (based on various IntertaskProtect
markings) that this mutex is used.

 <user specified>

Similar to SINGLE, but this specifies the name of the mutex control to
be used. It is assumed this is a SW_ReentrantMutex_handle_t,
available from the compiler global name scope. Any realized file
include files must be added to sys_incl.h, and the control itself must be
initialized and deconstructed manually in realized code.

Domain IntertaskProtect
Allows the user to manually specify the if domain is to be protected by
a single mutex, applied in every domain service.

 AUTO (default)
Allows domain mutex control to be applied as specified by appropriate
markings on domain operations, classes and associations.

 ALL

Requires the domain mutex to be secured at the entry of each domain
service, and released on return. If IntertaskMutex == AUTO (or unset)
this forces the generation of a single domain mutex control as if
IntertaskMutex were SINGLE. This prevents the automatic generation
of mutex controls at the class, class instance, association and link, and
overrides any IntertaskProtect setting they may have.

Domain
Service IntertaskProtect

Allows the user to manually specify if this domain service is to be
protected by domain mutex controls.

 OFF (default) No special protection is applied entering or returning from this service.

 ON

Upon entering this domain operation, the domain mutex control is
secured, and released upon return. If the domain's IntertaskMutex ==
AUTO, then it is overridden to SINGLE.

 SINGLE

Upon entering this domain operation, the domain service mutex control
is secured, and released upon return. Setting SINGLE has no effect
on the domain's IntertaskMutex setting.

Class IntertaskProtectClassExtent
Specify the use of Class Extent mutex controls to protect the class
extent structures of this class.

 AUTO (default)

Similar to ALWAYS but only applied in the case two a domain is
deployed to two or more tasks, and contention for this class is
detected. (Not currently supported, resulting in NEVER)

 ALWAYS

Always apply a mutex control to protect the class extent structures of
this class. If the domain IntertaskMutex marking is AUTO, then
generate a class extent mutex control for this class.

 NEVER
Do not apply a mutex control to protect the class extent structures of
this class.

Class IntertaskProtectInstance
Specify the use of Class Instance mutex controls to protect each
instance's data.

 AUTO (default)

Similar to ALWAYS but only applied in the case two a domain is
deployed to two or more tasks, and contention for this class' instances
is detected. (Not currently supported; resulting in NEVER)

 ALWAYS

Always apply a mutex control to protect the instance data of this class.
If the domain IntertaskMutex marking is AUTO, then generate an
instance mutex control for this class.

 NEVER
Do not apply a mutex control to protect the class extent structures of
this class.

Association IntertaskProtect
Specify the use of mutex controls to protect the association's
structures.

 AUTO (default)

Similar to ALWAYS but only applied in the case two a domain is
deployed to two or more tasks, and contention for this association is
detected. (Not currently supported, resulting in NEVER)

PathMATE Transformation Maps Mutex Controls

4

 ALWAYS

Always apply a mutex control to protect storage structures of this
association. If the domain IntertaskMutex marking is AUTO, then
generate an association mutex control.

 NEVER
Do not apply a mutex control to protect the storage structures of this
association.

State IntertaskProtect Specify mutex controls on state entry.

 PIPELINED
Secure the state's mutex when transitioning into the state. Release
the mutex after the entry actions are complete.

 Table 1: Mutex Control Markings Table

Please note – with the Class properties specified above – the specification of

IntertaskProtectClassExtent and IntertaskProtectInstance for a supertype

class will override any mutex control settings for its subtypes.

State Pipelining

Setting the IntertaskProtect property of a state to "PIPELINED" allows only

one instance of a class to be entering state at a time. A mutex is generated

for each pipelined state. The state pipeline mutex is acquired before

transitioning into the state and released after the transition to the state is

complete.

ReentrantMutex

The ReentrantMutex, used in a manner similar to the CriticalSection

mechanism, will be provided to allow for multiple calls to enter()from the
same task all to return immediately as long as a different task does not have

it. This is implemented in a manner that uses a simple mapping to an

appropriate RTOS mechanism from each supported target platform for best

efficiency.

Acquiring and Releasing Controls

Single Domain Controls - Domain Service

When a domain IntertaskMutex == SINGLE or <user specified>, a single

domain control is used to control access. When applied to a domain service,

the mutex is secured upon entry to the service, and released upon return.

When a single control is applied in the context of Class and Association

accesses, these accesses are controlled by securing and releasing the control

as close to the protected access as possible to reduce the potential duration

of contention. This table outlines how each access is protected:

element access location

Class Extent CREATE Within accessor function

 DELETE Within accessor function

 FIND CLASS Within accessor function

 FOREACH CLASS

Within the invoking

action

Class

Instance Attribute

Within the invoking

action

PathMATE Transformation Maps Mutex Controls

5

 FOREACH/WHERE

Within the invoking

action

 FIND/WHERE Within accessor function

 DELETE Within accessor function

 current state update Within accessor function

Association (from this

participant) Within accessor function

Association LINK or UNLINK Within accessor function

 FIND <nav> Within accessor function

 FOREACH <nav>

Within the invoking

action

Table 2: Single Control Locations

With Class and Association Controls

In the case where class and association controls are generated, the

proliferation of mutex control can dramatically increase the potential for a

“deadly embrace” deadlock when one task (task A) secures some of the

mutexes it needs, and finds that another task (task B) has other of the

mutexes it needs, and blocks waiting for these to be released. If task B is

itself waiting for some of the mutexes locked by task A, then this creates a

“deadly embrace”. (For a mode detailed illumination of this case see

Appendix B – Why Multiple Mutexes Must .)

In order to avoid deadlocks, it is important that all the mutex controls needed

for an action are secured before the action itself is started. The strategy

applied in this feature implementation is to acquire before the start of the

action all the mutex controls needed for an action and for all domain-local

services called synchronously within the action. For example, if a domain

service D:S() requires mutex control M1, and D:S() synchronously and locally

calls the class service D.C:S() which requires mutex control M2, then both M1

and M2 are acquired at the beginning of D:S().

Even with this strategy it is still possible to create a multi-task topology with

deadlocks, and the designer must take the utmost care to design avoid these.

Some techniques to help avoid these are when a domain runs in multiple

tasks and requires mutexes:

- Ensure all domain that it synchronously (locally) calls do not require

mutexes

- Allocate server domains to their own tasks

- Review the domain-level scenarios with tasks in mind and understand

which mutexes are acquired and released, and when.

PathMATE Transformation Maps Mutex Controls

6

Appendix A – Generated Mutex Code

This appendix highlights the code generated from manually specified mutex controls

(per section 4.5). The test model BlockingTest has the following domains:

M ultiTasksW ithin
<<dom ain>>

Driver1
<<dom ain>>

Driver2
<<dom ain>>

SingleLock
<<dom ain>>

SoftwareM echanism s
<<dom ain>>

Support
<<dom ain>>

this dom ain has a single
dom ain m utex control

DelayControl
<<dom ain>>

M

Figure 1 – BlockingTest Mutex Test System

The BlockingTest model has the following domain MultiTasksWithin:

PathMATE Transformation Maps Mutex Controls

7

TaskOneExecutive
choreIndex : Integer = 0

<<Event>> DoNextChore()
<<Event>> Done()

TaskTwoExecutive

<<Event>> DoNextChore()
<<Event>> Done()

OtherVictim
<<Identifier>> id : Integer
x : Integer = 0
y : Integer = 1

Victim
<<Identifier>> id : Integer
x : Integer = 0
xPlusOne : Integer = 1

0..n0..1

+is_with

0..n0..1
A1

W orkClass

doW ork()
<<Event>> CREATE()
<<Event>> DELETE()
<<Event>> FINDCLASS()
<<Event>> FOREACHCLASS()
<<Event>> ATTR_RW ()
<<Event>> FOREACH_W HERE()
<<Event>> FIND_W HERE()
<<Event>> LINK()
<<Event>> UNLINK()
<<Event>> FOREACH_NAV()
<<Event>> FIND_NAV()

Executive

S1 S1

11 1

+comm ands

1

A3

Figure 2 – BlockingTest.MultiTasksWithin(MT) Domain

To build contention, the TaskOneExecutive class is allocated to SYS_TASK_ID_MAIN,

and the TaskTwoExecutive class is allocated to SYS_TASK_ID_TASK2, via

properties.txt:

The following markings are used to set up the Visual C++ project files

Domain,BlockingTest.*,SpotlightEnabled,F

Domain,BlockingTest.SW,RealizedPath,c:\pathmate\design\c\mechanisms

Domain,BlockingTest.SUPP,RealizedPath,realized

System,BlockingTest,Defines,PATH_NO_INPUT_DRIVER;PATH_DELAY_MUTEX_BLOCKING

MULTITASK SETTINGS ---

Domain,BlockingTest.D1,TaskID,SYS_TASK_ID_MAIN

Domain,BlockingTest.D2,TaskID,SYS_TASK_ID_TASK2

Domain,BlockingTest.SL,TaskID,SYS_TASK_ANY

Domain,BlockingTest.SW,TaskID,SYS_TASK_ANY

Domain,BlockingTest.SUPP,TaskID,SYS_TASK_ANY

Domain,BlockingTest.DelayControl,TaskID,SYS_TASK_ANY

PathMATE Transformation Maps Mutex Controls

8

Domain,BlockingTest.MT,TaskID,SYS_TASK_ANY

Object,BlockingTest.MT.TaskOneExecutive,TaskID,SYS_TASK_ID_MAIN

Object,BlockingTest.MT.TaskTwoExecutive,TaskID,SYS_TASK_ID_TASK2

MUTEX SETTINGS ---

Domain,BlockingTest.SL,IntertaskProtect,ALL

Object,BlockingTest.MT.Victim,IntertaskProtectClassExtent,ALWAYS

Object,BlockingTest.MT.Victim,IntertaskProtectInstance,ALWAYS

Object,BlockingTest.MT.OtherVictim,IntertaskProtectClassExtent,ALWAYS

Object,BlockingTest.MT.OtherVictim,IntertaskProtectInstance,ALWAYS

BinaryRel,BlockingTest.MT.A1,IntertaskProtect,ALWAYS

MULTIPROCESS SETTINGS ---

#System,BlockingTest,GeneratedPath,..\gc

#Domain,BlockingTest.SUPP,RealizedPath,..\realized_c

Table 3 – BlockingTest Properties

As outlined in section 0 Acquiring and Releasing Controls above, the mutex controls

for each action are acquired at the start of each action, so when an RTOS task

prepares to enter an action, it secures all needed mutex locks at once, and will not

be deadlocked by securing a partial set and then waiting on the remainder.

Showing class-extent and instance locking, the entry action for

MT.WorkClass.Attr_ReadWriting is:

 String full_msg = msg;

 DelayControl:ResetDelay();

 FOREACH oov = CLASS OtherVictim

 {

 // First check to see if the attr values are valid

 IF (oov.x != oov.y-1)

 {

 SUPP:WriteString("ERROR - invalid OtherVictim attribute values.");

 }

 oov.x = oov.x + 113;

 oov.y = oov.x + 1;

 }

 full_msg = full_msg + " ATTR_RW";

 MT:CheckDelay(before_time, full_msg, expect_delay);

 DelayControl:ClearDelay();

Table 4 - MT.WorkClass.Attr_ReadWriting Entry Action PAL

Just before the generated body of this action, the class extent and instance mutex

controls for the OtherVictim class are secured by:

 SW_ReentrantMutex_enter(&MT_OtherVictim_classMutexControl);

SW_ReentrantMutex_enter(&MT_OtherVictim_instanceMutexControl);

Table 5 – Generated Fragment: Class Extent and Instance Mutexes

PathMATE Transformation Maps Mutex Controls

9

They are released at the end of this action.

If an action has a number of mutexes accessed at various points throughout the

action, they are all secured at the beginning of the action to avoid deadlock. The

entry action for MT.WorkClass.Linking

 Ref<Victim> v;

 Ref<OtherVictim> ov;

 String full_msg = msg;

 DelayControl:ResetDelay();

 v = FIND CLASS Victim;

 ov = CREATE OtherVictim(id = 9999);

 LINK v A1 ov;

 full_msg = full_msg + " LINK";

 MT:CheckDelay(before_time, full_msg, expect_delay);

 DelayControl:ClearDelay();

Table 6 - MT.WorkClass.Linking Entry Action PAL

Just before the generated body of this action, the class extent and association mutex

controls for Victim, OtherVictim and A1 are secured by:

SW_ReentrantMutex_enter(&MT_Victim_classMutexControl);

SW_ReentrantMutex_enter(&MT_OtherVictim_classMutexControl);

SW_ReentrantMutex_enter(&MT_A1_mutexControl);

Table 7 – Generated Fragment: Class Extent and Instance Mutexes

They are released at the end of this action.

PathMATE Transformation Maps Mutex Controls

10

Appendix B – Why Multiple Mutexes Must

Secured in a Group instead of Inline

Section 0 Acquiring and Releasing Controls above introduces that a proliferation of

mutex controls can result in the case where two tasks are blocking on each other to

release mutexes they each need. Unless mutexes are secured carefully, this is a

startlingly easy situation to encounter.

Deadly Embrace With Inline Mutexes

The following example presumes mutexes are secured when they are needed,

inline with the PAL statements or statement blocks they are associated with.

Dom
<<dom ain>>

C1 C2

Figure 3 – Domain Dom with Classes C1 and C2

A domain Dom has classes C1 and C2 that are both accessed by tasks A and

B, so the mutexes Dom_C1_classMutexControl and

Dom_C2_classMutexControl are generated based on the properties:

Object,Sys.Dom.C1,IntertaskProtectInstance,ALWAYS

Object,Sys.Dom.C2,IntertaskProtectInstance,ALWAYS

Table 8 – Properties for Classes C1 and C2

Action Called from Task A

The action ActA which is called from task A does:

FOREACH this_one = CLASS C1;

{

 Ref<C2> other = FIND FIRST C2;

 // continue on and do other things

}

Table 9 – Action ActA

 If the mutexes were generated inline with the statements that needed them

(and not before), they would appear in this relative position to the PAL:

PathMATE Transformation Maps Mutex Controls

11

SW_ReentrantMutex_enter(&Dom_C1_classMutexControl);

FOREACH this_one = CLASS C1;

{

SW_ReentrantMutex_enter(&Dom_C2_classMutexControl);

 Ref<C2> other = FIND FIRST C2;

SW_ReentrantMutex_leave(&Dom_C2_classMutexControl);

 // continue on and do other things

}

SW_ReentrantMutex_leave(&Dom_C1_classMutexControl);

Table 10 – Action ActA with generated Inline Mutexes

Highlighted

Action Called from Task B

The action ActB which is called from task B does:

FOREACH mine = CLASS C2;

{

 Ref<C1> yours = FIND FIRST C1;

 // continue on and do other things

}

Table 11 – Action ActB

 Mutexes generated inline are:

SW_ReentrantMutex_enter(&Dom_C2_classMutexControl);

FOREACH mine = CLASS C2;

{

SW_ReentrantMutex_enter(&Dom_C1_classMutexControl);

 Ref<C1> yours = FIND FIRST C1;

SW_ReentrantMutex_leave(&Dom_C1_classMutexControl);

 // continue on and do other things

}

SW_ReentrantMutex_leave(&Dom_C2_classMutexControl);

Table 12 – Action ActB with generated Inline Mutexes

Highlighted

The Deadlock

In the implementation-level sequence chart below, the timing shows that both

tasks A and B have secured their first mutex control before they get to the

second – which is held by the other task, causing a deadly embrace:

PathMATE Transformation Maps Mutex Controls

12

4: <lock secured>

Task A Task B ActA ActB SW

1: ActA

2: ActB

3: SW_ReentrantMutex_enter(&Dom_C1_classMutexControl)

5: SW_ReentrantMutex_enter(&Dom_C2_classMutexControl)

7: SW_ReentrantMutex_enter(&Dom_C2_classMutexControl)

8: SW_ReentrantMutex_enter(&Dom_C1_classMutexControl)

These 2 calls (7 and 8)
never return.

6: <lock secured>

Figure 4 – Sequence of Inline Locking Making a Deadly Embrace

No Deadlock With Grouped Mutexes

The alternative to generating code for entering and leaving mutexes inline is

to secure all mutexes at the beginning of an action, and generate all mutex

exits at the end of an action. Another critical element to this strategy is to

always secure mutexes in the same order. So actions ActA and ActB above

would instead have mutexes accessors generated in the following locations:

SW_ReentrantMutex_enter(&Dom_C1_classMutexControl);

SW_ReentrantMutex_enter(&Dom_C2_classMutexControl);

FOREACH this_one = CLASS C1;

{

 Ref<C2> other = FIND FIRST C2;

 // continue on and do other things

}

SW_ReentrantMutex_leave(&Dom_C1_classMutexControl);

SW_ReentrantMutex_leave(&Dom_C2_classMutexControl);

Table 13 – Action ActA with generated Grouped Mutexes

Highlighted

SW_ReentrantMutex_enter(&Dom_C1_classMutexControl);

SW_ReentrantMutex_enter(&Dom_C2_classMutexControl);

FOREACH mine = CLASS C2;

PathMATE Transformation Maps Mutex Controls

13

{

 Ref<C1> yours = FIND FIRST C1;

 // continue on and do other things

}

SW_ReentrantMutex_leave(&Dom_C1_classMutexControl);

SW_ReentrantMutex_leave(&Dom_C2_classMutexControl);

Table 14 – Action ActB with generated Grouped Mutexes

Highlighted

Now the same initial timing as shown above has a much different result:

PathMATE Transformation Maps Mutex Controls

14

Task A Task B ActA ActB SW

1: ActA

2: ActB

3: SW_ReentrantMutex_enter(&Dom_C1_classMutexControl)

4: <lock secured>

6: SW_ReentrantMutex_enter(&Dom_C2_classMutexControl)

7: <lock secured>

Now Task A can complete ActA

5: SW_ReentrantMutex_enter(&Dom_C1_classMutexControl)this is blocked and
does not return until
later (below)

8: SW_ReentrantMutex_leave(&Dom_C1_classMutexControl)

9: SW_ReentrantMutex_leave(&Dom_C2_classMutexControl)

10: <ActA done>

11: <lock Dom_C1_classMutexControl secured (finally)>

12: SW_ReentrantMutex_enter(&Dom_C2_classMutexControl)

13: <lock secured>

Now Task B can complete ActB

14: SW_ReentrantMutex_leave(&Dom_C1_classMutexControl)

15: SW_ReentrantMutex_leave(&Dom_C2_classMutexControl)

16: <ActB done>

Figure 5 – Sequence of Grouped Locking Avoiding a Deadly Embrace

