
©2008 by Pathfinder Solutions

Platform-Independent Action

Language Parsing Directives

Version 1.0

June 17, 2004

PathMATE Technical Notes

Pathfinder Solutions LLC

33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com

888-662-7284

 ii

Table Of Contents

1. Introduction... 1

2. Feature Overview ... 1

Parsing Control ... 1

Implementation Code Inline ... 1

Conditional Inclusion ... 2

Implementation Code #INCLUDE .. 3

Rules/Conventions... 3

3. Feature Implementation .. 4

Transformation Engine ... 4

Design Changes .. 4

4. MDA Philosophy Note ... 4

Platform-Independent Action Language Parsing Directives

1

1. Introduction

This Technical Note describes features to be provided in the PathMATE product family

for specific PAL parsing directives to support implementation code flexibility and PAL

action configurability. These goals will be achieved with the following PAL parser

directives:

- Parsing control via ParseActions property for System, Domain, Subsystem,

Class

- #INLINE and #END_INLINE with implementation code between

- #IFDEF value and #ENDIF where value is a system property

- #INCLUDE file that injects the contents of implementation code files into

the generated code for an action

2. Feature Overview

Parsing Control

This feature allows the modeler control over which actions get parsed as valid

PAL, and which actions are treated as completely implementation code and

not parsed at all. By setting the ParseActions property (T, F; default T) either

in Rose on the PathMATE tab or via properties.txt, all actions within the

affected unit are controlled. This includes initialization actions for systems

and domains as appropriate. This property is available for the System,

Domain, Subsystem and Class.

If a modeler wishes to suppress the parsing of a single action, they may place

a #INLINE directive at the top line of the action (see section 0

Implementation Code Inline below).

Implementation Code Inline

The #INLINE and #END_INLINE will allow implementation code to be placed

within a PAL action. Upon transformation, the lines containing #INLINE and

#END_INLINE will be discarded and the text between will be emitted directly

in the target document. No PAL parsing or checking will be done on this text.

For example, consider the following action:

Integer item_count = 0;
#INLINE

char *datap = (char*) &item_count;
// Move up 1 byte
datap += 1;
// Pass off
external_mystery_function(datap);

#END_INLINE

This action will transform into the following C implementation code:

int item_count = 0;

char *datap = (char*) &item_count;
// Move up 1 byte
datap += 1;
// Pass off
external_mystery_function(datap);

Platform-Independent Action Language Parsing Directives

2

Conditional Inclusion

System properties can be used to control the inclusion/exclusion of segments

of PAL actions with #IFDEF value and #ENDIF. In addition, #ELSE and

#ELSE_IFDEF value are also supported. If the value of the PathMATE

System property value is not empty (“”), then the PAL statements and

directives between the #IFDEF value and the corresponding #ENDIF will be

included. Otherwise they will be discarded.

For example, consider the following action:

Integer item_count = 0;
// Compute the sum based on the system type

#IFDEF TruckBased

FOREACH pallet = truck->A1
{

 item_count = item_count + pallet.itemCount;
}

#ELSE_IFDEF ShipBased
FOREACH container = storage_building ->A2
{

 FOREACH pallet = container->A3
 {
 item_count = item_count + pallet.itemCount;
 }

}
#ELSE

FOREACH item = hand_cart->A4
{

 item_count = item_count + 1;
}

#ENDIF // ShipBased

If the System property TruckBased == “T” and the System property

ShipBased == “”, the above action will reduce to:

Integer item_count = 0;
// Compute the sum based on the system type

FOREACH pallet = truck->A1
{

 item_count = item_count + pallet.itemCount;
}

If the System property TruckBased == “” and the System property ShipBased

== “T”, the above action will reduce to:

Integer item_count = 0;
// Compute the sum based on the system type

FOREACH container = storage_building ->A2
{

 FOREACH pallet = container->A3
 {
 item_count = item_count + pallet.itemCount;
 }

}

If the System property TruckBased and ShipBased both == “” the above

action will reduce to:

Platform-Independent Action Language Parsing Directives

3

Integer item_count = 0;
// Compute the sum based on the system type

FOREACH item = hand_cart->A4
{

 item_count = item_count + 1;
}

Implementation Code #INCLUDE

The contents of implementation code files can be injected into the generated

code for an action. The PAL parser directive #INCLUDE file will look in the

includes subdirectory (relative to the current working directory of the code

generation activity) and if the specified file is found, its contents will be

inserted directly where the #INCLUDE directive was.

For example, consider the following action:

Integer item_count = 0;
#INCLUDE middle.c

Assume the file project/c/include/middle.c exists and this file contains:

printf(“Item count = %d.\n”, item_count);

The above action will expand into the following implementation code if

translated to C:

int item_count = 0;
printf(“Item count = %d.\n”, item_count);

To facilitate support in implementation languages where there is no #include

directive, such as Java, the actual reading of the file will happen at

transformation time.

Rules/Conventions

- A directive is expected to start in the first character of its line – “#”

in column 1.

- All directives are expected to be the only thing on the line of text

containing them (except for comments) – they cannot be co-

located with PAL statements on the same line.

- Upon transformation all directives will be discarded and only their

results will be available in the target document

- #INLINE and #END_INLINE directives must be matched.

Encountering an #INLINE within an already-INLINE section will

result in an error. Encountering an #END_INLINE outside of an

INLINE section will result in an error. Encountering an end of

file/action within an INLINE section will result in a warning.

- #IFDEF and #ENDIF directives must be matched. Encountering an

#ENDIF outside of an IFDEF section will result in an error.

Encountering an end of file/action within an IFDEF section will

result in an error.

Platform-Independent Action Language Parsing Directives

4

- Any PAL parser directives within a #INLINE section will be ignored

except for #END_INLINE.

- A #INCLUDE directive with a blank file will result in an error.

3. Feature Implementation

Transformation Engine

The Engine PAL parser will need to be changed to identify and properly handle

these new directives. A new Statement type ImplementationCode will be

created with a String field “rawText”. An instance of ImplementationCode will

be created for each line of text appearing between the #INLINE and

#END_INLINE directives. In addition #INCLUDE directives will be converted

into an instance of ImplementationCode where the rawText value will be the

contents of the included file.

Design Changes

The Maps will have to handle a new the PAL statement type –

ImplementationCode – emitting the rawText directly.

4. MDA Philosophy Note

Model Driven Architecture brings many benefits to its practitioners. Many of these

benefits – and the most important of these benefits - are derived from the key

principle of separation of the Platform Independent Models from specific

implementation details. The interleaving of implementation code with PAL in actions

is a very direct and insidious violation of this separation, and thereby seriously

undermines the effectiveness of such models. It is Pathfinder Solutions’ position that

the #INCLUDE, #INLINE and #END_INLINE directives should only be applied in the

most judicious manner, and be treated as potentially dangerous. Good luck.

