
©2008 by Pathfinder Solutions

PathMATE Maps IncidentHandleProfile

Version 1.2

April 4, 2004

PathMATE Technical Notes

Pathfinder Solutions LLC

33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com

888-662-7284

 ii

Table Of Contents

1. Introduction .. 1

2. General Usage ... 1

Example ... 1

3. IncidentHandleProfile ... 2

Definition ... 2

Reference ... 2

Example ... 3

Definition ... 3

Reference ... 3

Rules/Conventions... 3

4. Profile Property Management .. 3

5. Feature Implementation ... 3

PathMATE Maps IncidentHandleProfile

1

1. Introduction

This Technical Note describes a mechanism for defining parameter Profiles for

IncidentHandles. Profiles will enable stringent checking of IncidentHandle parameter

accesses, and reduce the unnecessary system-level compile-time turbulence caused

by parameter addition/deletion/renaming within domains.

An IncidentHandle Profile is a named property set that defines the number, name

and datatype of parameters that may be accessed in PAL contexts outside of the

defining context. An IncidentHandle’s defining context is the action it is created

within. If an attempt is made to access a parameter of an IncidentHandle that is not

“published” via it’s IncidentHandle Profile, a translation-time message will result in

the generated code, preventing successful compilation.

2. General Usage
In general the usage of IncidentHandles does not require the CALLing context to set

any parameter values. In these cases, it is sufficient to simply CALL the

IncidentHandle, and no additional information about the IncidentHandle – specifically

the parameters that may be published by the based service (the service pointed to

by the IncidentHandle). In these cases, no parameter information is needed in the

calling context.

An IncidentHandle profile is used whenever a recipient (generally the CALLing

context) of an IncidentHandle needs to write a parameter value to that

IncidentHandle. A common example of this is when a client domain requests an

activity to be done within a server domain, and requires a callback with a status

parameter be sent when the activity is done. The server domain needs to write the

status parameter to the callback IncidentHandle before it is CALLed.

Example

In the CarShuffle sample system, a somewhat different case is shown. The

VehicleHousing(VH) domain registers user input callbacks with the

OperatorInterface(OI) domain via the OI:RegisterWithContextCommand

domain service. These user input callbacks require an input parameter to

convey the user input, and a client_callback parameter to be called when

the VH activity resulting from the input completes. In this case we will focus

on the handler for the “Move In” command. In VehicleHousing, the

Car:moveIn class service accepts user “Move In” commands:

C:moveIn(instance-based):): Moves the car into the specified garage. This is registered with OI
as a callback requiring the "input" and “client_callback” parameters.
 in: input(Integer): Indicates which garage to move into.
 in: client_callback(IncidentHandle)

During start up an IncidentHandle to C:moveIn is created and passed into

OI:RegisterWithContextCommand, where it ends up stored in the

Command.issueCommandCallback attribute:

PathMATE Maps IncidentHandleProfile

2

Command

issueCommandCallback : ServiceHandle
label : String
sequenceNumber : Integer

activate()

OI.Command class

When the user issues the “Move In” command and then provides the target

garage number, the OI.Operator.AwaitingCommandParameter entry action

sends the garage number back to VH:

InputReceived(Integer input)

AwaitingComm
andParam eter

OI.Operator lifecycle (partial)

OI.Operator.AwaitingCommandParameter entry action (partial):

 CALL cmd.issueCommandCallback(input = input, client_callback =
command_complete);

 Once we define how to define an IncidentHandleProfile, we will return to this

example and apply the profile to it.

3. IncidentHandleProfile

Definition

Base Incident: Every IncidentHandle that allows any of its parameters to be

written in PAL contexts outside of its defining context must define an

IncidentHandleProfile. This is done by specifying the IncidentHandleProfile

name via the “Profile” property of the IncidentHandle’s base incident - via the

base incident’s Rose Specification PathMATE tab, or via properties.txt. The base

incident is the domain or class service that is referenced with the

IncidentHandle is created.

Profile: By default, all parameters defined for the base incident are published.

In the case where some parameters are to be published and others are not, the

published parameters explicitly set their property “ProfileParameter” to “T” - via

the property’s Rose Specification PathMATE tab, or via properties.txt.

Reference

When an IncidentHandle parameter is to be written outside of its defining

context, the data atom carrying that IncidentHandle must refer to the

IncidentHandleProfile publishing that parameter. This is done by specifying the

IncidentHandleProfile name via the “Profile” property at the point of declaration:

- For class attributes, the IncidentHandleProfile name is specified via a

“Profile” property of the attribute.

PathMATE Maps IncidentHandleProfile

3

- For service or event parameters, the IncidentHandleProfile name is

specified via a “Profile” property of the parameter.

- For action local variables, the IncidentHandleProfile name is specified via

a “Profile” property of the local variable declaration statement.

Example

The CarShuffle sample system includes the use of Profiles.

Definition

A profile is defined for the user input callback. The Car:moveIn class service

property “Profile” is set to “InputWithParam”. The parameters input and
client_callback are published by default.

Reference

The “InputWithParam“ service handle parameters input and client_callback
are written to the Command.issueCommandCallback attribute in the

OI.Operator.AwaitingCommandParameter entry action. Therefore we set the

Command.issueCommandCallback attribute property “Profile” to

“InputWithParam”.

Rules/Conventions

- A single named IncidentHandleProfile may be defined by more than one

base incident. In this case, the names and datatypes of all published

parameters must match.

- The “this” parameter (destination) of an instance-based class service

cannot be published.

- It is not necessary to reference the IncidentHandleProfile for a data atom

that does not have parameters accessed from it, even if the service

handle’s base incident defines an IncidentHandleProfile. In the example

above, the OI:RegisterWithContextCommand domain service parameter

callback does not need to reference any IncidentHandleProfile.

- If a service has an IncidentHandleProfile and the service has one or more

parameters, but no parameters have “ProfileParameter” == “T”, all

parameters of this service are assumed to be published as part of the

profile.

4. Profile Property Management

Since an IncidentHandleProfile is a characteristic of the base analysis model, and is

not a design-specific marking, the “Profile” and “ProfileParameter” parameters will be

incorporated into the Rose-visible PathMATE property set, and set within Rose.

5. Feature Implementation

The goals of this feature are:

- Provide enforcement translation-time checks on the data integrity of

IncidentHandle usage.

PathMATE Maps IncidentHandleProfile

4

- Speed incremental compile time by eliminating inter-domain coupling

introduces by the SYS_PARAMNUM enumerate.

This feature provides code generation templates (applied for C++, C, and Java

generation) that maintain profile information for all IncidentHandleProfiles and

correlate this with the profile usage where service handle parameters are accessed.

Transformation-time checks are performed to ensure:

- IncidentHandle parameters can only be accessed from IncidentHandle data

atoms that reference a pre-defined profile.

- The parameter names and data types for all such accesses must match the

referenced profile.

- A service with no parameters may not specify an IncidentHandleProfile.

- (All Rules/Conventions in section 3.4 above.)

To reduce the unnecessary system-level compile-time turbulence caused by

parameter addition/deletion/renaming within domains, the SYS_PARAMNUM

enumerate has been eliminated. Instead each IncidentHandleProfile generates its

own include file, containing a set of constants identifying each published parameter

in the profile.

The profile include file is named sys_profile_<profile name>.hpp or

sys_profile_<profile name>.h or SysProfile<profile name>.java. This profile

definition file is only included in files where the profile’s parameters are actually

accessed. This profile definition file also contains a documentation summary of its

profile, including name, defining service, and published parameter names and types.

