
©2008 by Pathfinder Solutions 

 

 
 

 

 

 

 

Specialized Memory Pool for C and 

C++ 

Version 1.6 

June 14, 2006 

 

 

 

PathMATE Technical Notes 

 

 

Pathfinder Solutions LLC 

33 Commercial Drive, Suite 2 

 Foxboro, MA 02035 USA 

www.PathfinderMDA.com 

888-662-7284



 

 ii

 

Table Of Contents 

1. Introduction........................................................................................... 1 

2. Feature Overview ................................................................................... 1 

Types of Pools .......................................................................................... 1 

Task-Specific General Purpose Pool ......................................................... 1 

Task-Specific Incident Pool ..................................................................... 1 

Default Pool .......................................................................................... 2 

Fault Handling ...................................................................................... 2 

Specification of Pool Block Sizes .................................................................. 2 

General Purpose Task Pool Sizing ............................................................ 2 

Incident Pool Sizing ............................................................................... 3 

Default Pool .......................................................................................... 4 

Overall Feature Disabling ........................................................................... 4 

Marking Summary ..................................................................................... 4 

3. Feature Implementation ........................................................................ 5 

Mechanism Extensions ............................................................................... 5 

Template Extensions .................................................................................. 5 

When to Apply General Purpose Task Pool ................................................ 5 

Task-Safety Report .................................................................................... 6 

Usage Statistics Reporting .......................................................................... 6 

4. Feature Design ....................................................................................... 6 

Classes .................................................................................................... 7 

MemoryBlock ........................................................................................ 7 

PfdAllocationCluster ............................................................................... 7 

PfdBufferManager  <<singleton>> .......................................................... 7 

PfdClusterManager ................................................................................ 8 

PfdCriticalSection .................................................................................. 8 

PfdLocalPool ......................................................................................... 8 

PfdPoolBlock ......................................................................................... 8 

PfdPoolBlockSpecification ....................................................................... 9 

PfdPoolSpecification ............................................................................... 9 

PfdTask ................................................................................................ 9 

Associations ............................................................................................. 9 

Domain Scenarios ................................................................................... 10 

Domain Services ..................................................................................... 21 

PfdAllocationCluster Operations ................................................................. 21 

PfdBufferManager Operations.................................................................... 21 

PfdClusterManager Operations .................................................................. 22 



 

 iii

PfdCriticalSection Operations .................................................................... 23 

PfdLocalPool Operations ........................................................................... 23 

PfdPoolBlock Operations ........................................................................... 23 

5. System Types ....................................................................................... 23 

Enumerates ............................................................................................ 23 

User Defined Types ................................................................................. 23 



Specialized Memory Pool for C and C++  
 

 

 

 

1 

 

 

1. Introduction 

This Technical Note describes extensions to PathMATE’s C and C++ Maps to improve 

static buffer management. These extensions support task-local memory 

management pools. They are based on the buffer manager. 

2. Feature Overview 

The goals of this feature are to: 

• Reduce the run-time overhead associated with dynamic memory allocation, 

which normally goes through the BufferManager, an intertask-safe resource. 

• Allow for the specific sizing and allocation of dynamic memory blocks for 

specific classes. 

This feature is built upon the base capabilities and characteristics of the 

BufferManager mechanism.  This is a simple block management mechanism, where 

memory blocks of a small number of different sizes are arranged such that a request 

for a specific size block will result in the allocation of one of the smallest sized block 

available that will satisfy the request.  Deallocation marks the originally allocated 

block as available again.  One consequence of such a simple facility is that there is 

no notion of fragmentation – only contiguous blocks are allocated and deallocated, so 

no loss of efficiency over time is realized from varying usage and release patterns.    

Also, when a larger sized block is used to satisfy a smaller sized request, the entire 

block is allocated, so when it is deallocated it is again immediately available for use 

up to its complete size. 

Types of Pools 

All dynamically allocated memory elements come from one of three types of 

pools: 

• A task-specific general purpose pool 

• A task-specific incident pool 

• The default pool 

Note - the allocation of class instances from a pre-declared array is currently 

supported via the MaxIndex  marking and the InstanceTable mechanism.   

Task-Specific General Purpose Pool 

You may define a memory pool for use within a single task. The pool provides 

task-local allocation and deallocation of memory blocks of a variety of user-

specified sizes, in support of class instance data. Because it is task-local, the 

task-specific pool avoids the overhead of intertask safety mechanisms. 

Note: If a task-specific pool is defined and a class instance is created for a 

class that did not specify a MaxIndex  (and thereby got its own array space), 

the task-specific pool is used. 

Task-Specific Incident Pool 

A task-specific incident pool may be specified.  This pool is an array within the 

Task structure that holds pointers to available Incident instances.  These are 



Specialized Memory Pool for C and C++  
 

 

 

 

2 

 

 

used to satisfy any incident allocations within the task.  Once allocated, the 

address of the new incident is removed from the Task pool.  Any Incidents 

freed within a Task that has an incident pool will go into that task’s pool, 

regardless of where they came from.  If a Task with an incident pool runs out 

of Incidents and a request comes in for another, the incident pool is 

replenished from the default pool.  If a Task with an incident pool runs fill up 

with available Incidents and another is released, ½ of the available incidents 

in the incident pool are returned to the default pool. 

To support possible incident parameters, when a task-specific incident pool is 

used, a task-specific data container pool is also used.  The 

allocation/deallocation mechanics of this pool mirror that of the incident pool. 

Default Pool 

The default pool for dynamic memory allocation is the standard 

BufferManager pool. One instance of the BufferManager is allocated to each 

process in the system. Each instance provides intertask-safe allocation and 

deallocation of memory blocks of a variety of user-customizable sizes. If no 

other pool is specified for a dynamic memory request, or if an Incident is 

destined for the InterTaskIncidentQueue, the BufferManager pool is used. 

Fault Handling 

In the case of running out of memory the default action is to shut down the 

process in which the outage occurred.  A new SW Service 

SW:RegisterForErrorGroup(enum fault_type, IncidentHandle handler) will be 

provided to allow for the user configurable handling of the 

SW_FAULT_DEPLETED_MEMORY fault. 

Specification of Pool Block Sizes 

General Purpose Task Pool Sizing 

Task-specific pools are allocated by specifying the “TaskPool-<process 
label>- <task name>” marking. The designer should identify the specific 

sizes of the dynamic elements within their task, and specify block sizes and 

counts appropriately.  For example consider a scenario within the 

Robochef.FoodPrep domain where many recipes can be loaded and unloaded.  

Let's say the base RecipeStepSpec class instance overhead is 40 bytes, and a 

maximum of 900 instance of this class are expected.    Assume it is allocated 

to its own domain and this specifies a domain-specific pool.  One way to 

allocate space for those events is to specify 900 blocks of 40 bytes.  A partial 

specification of this would be: 

System,Robochef,TaskPool-MAIN-SYS_TASK_ID_FP,... 90 0|40; ... 

The sample specification below creates task-specific pools for the tasks 

SYS_TASK_ID_MAIN and SYS_TASK_ID_AUX. Each pool contains 1024 blocks 

in each of three block sizes: 

System,CarShuffle,TaskPool-MAIN-
SYS_TASK_ID_MAIN,1024|16;1024|48;1024`|196 
System,CarShuffle,TaskPool-MAIN-SYS_TASK_ID_AUX,102 4|88;1024|148;1024|306 



Specialized Memory Pool for C and C++  
 

 

 

 

3 

 

 

Optionally you may specify the reload and unload thresholds for each block 

size in the pool.  When the number of blocks in the pool falls below the reload 

threshold, the pool will try to lock the buffer manager.  If the buffer manager 

can't be locked, the pool will allocate the block.  If the buffer manager can be 

locked, it will replenish the pool and then allocate the block.  If the pool is 

empty, it will wait to obtain a lock on the buffer manager.  

 When the number of free spots in the pool falls below the unload threshold, 

the pool will try to lock the buffer manager.  If the buffer manager can't be 

locked, the pool will deallocate the block.  If the buffer manager can be 

locked, the pool will release memory to the buffer manager and deallocate the 

block.  If the pool has no free spots, the pool will wait to obtain a lock on the 

buffer manager and release memory back to the buffer manager. 

The default reload and unload thresholds are 5 or one less than the maximum 

count of items in the pool if the pools contains less than 5 items. 

Specify the reload and unload thresholds as follows: 

System,CarShuffle,TaskPool-MAIN-SYS_TASK_ID_MAIN,10 24|16|2|4;1024|48;1024|196 
System,CarShuffle,TaskPool-MAIN-SYS_TASK_ID_AUX,102 4|88;1024|148;1024|306|20 

In the example above, the main task pool of size 16 has a reload threshold of 

2 and an unload threshold of 4.  The size 48 and 196 pools use the default 

unload and reload threshold of 5. 

The aux task pool of size 306 has an unload threshold of 20 and a default 

reload threshold of 5.  There is no way to specify a default reload threshold 

and a non-default unload threshold. 

This feature is not supported on Windows using Visual C++ 6.0 and on OSE.  

These platforms do not support an unblocked acquisition of a mutex. 

NOTE: Reload and unload thresholds are only supported in C++. 

Incident Pool Sizing 

Task-specific incident pools are allocated by specifying the 

“TaskIncidentPool-<process label>- <task name>” and 

“TaskIncidentParameterPool-<process label>- <task name>” markings.  

The value of these markings is the maximum number of pre-allocated incident 

or parameter blocks to be made available.  They should be tuned to support 

the incident and incident parameter needs of your system during high usage 

scenarios.  The compiler flag PATH_MEMORY_STATISTICS will turn on 

statistics collection in the BufferManager and the LocalPools.  Each of these 

classes has a reportStatistics operation that can be called to print out 

statistics on memory usage which can help the designer tune the memory 

pool sizes. 

The sample specification below creates task-specific incident and parameter 

pools for the tasks SYS_TASK_ID_MAIN in the MON process, and 

SYS_TASK_ID_AUX in the PIO. Each task has 100 incidents and 50 

parameters: 

System,CarShuffle,TaskIncidentPool-MON-SYS_TASK_ID_ MAIN,100 
System,CarShuffle,TaskIncidentParameterPool-MON-SYS _TASK_ID_MAIN,50 
System,CarShuffle,TaskIncidentPool-PIO-SYS_TASK_ID_ AUX,100 



Specialized Memory Pool for C and C++  
 

 

 

 

4 

 

 

System,CarShuffle,TaskIncidentParameterPool-PIO-SYS _TASK_ID_AUX,50 

Default Pool 

Block sizes for the standard BufferManager pool can now be specified by the 

system marking “DefaultPoolSizes .”  This property takes a list of sizes 

(numeric literals or symbolic constants) in increasing order. If 

“DefaultPoolSizes ” is not specified the standard BufferManager pool will 

retain the default pool configuration as specified in the BufferManager 

mechanism module.  The sample specification below explicitly calls out block 

sizes matching the delivered BufferManager implementation: 

System,CarShuffle,DefaultPoolSizes,2048|32;1638|40; 1365|48;1024|64; 
512|128;128|512;32|2048;1|0xFFFF  

Overall Feature Disabling 

All task-local pools (general, incident and parameter) are gated with the 

PATH_USE_LOCAL_POOLS compiler flag.  This flag is set by default in 

generated project files and makefiles.  Setting the system marking 

DisableLocalPools to "TRUE" prior to generating project files and makefiles will 

cause the PATH_USE_LOCAL_POOLS compiler flag not to be set, disabling all 

task-local pools. 

Marking Summary 

The following markings control this feature: 

Model 

Element Name Value 

System DefaultPoolSizes <count>|<size>;<count>|<size>… 

System DisableLocalPools TRUE, FALSE (FALSE) 

System TaskPool-<process id>-<task id> <count>|<size>;<count>|<size>… 

System 

TaskIncidentPool-<process id>-<task 
id> <size> 

System 

TaskIncidentParameterPool-<process 
id>-<task id> <size> 

 

Where: 

 <count> and <size> are integer literals or symbolic constants, 

 <process id>-<task id> specify a valid process label and task id (from 

domain marking) 

In addition to marking-based controls, all BufferManager capabilities, 

excluding specialized pools, can be replaced by native malloc and free calls by 

setting the compile switch PATH_NO_BUFFER_MANAGER. 



Specialized Memory Pool for C and C++  
 

 

 

 

5 

 

 

3. Feature Implementation 

Mechanism Extensions 

Extensions to the C-Maps base mechanisms and system files take the existing 

SW_BufferManager mechanism and generalize it. These extensions allow for 

multiple instances, either task-local or intertask-safe, and configurable block 

sizes. To specify the block size for the default pool, the main() function calls a 

generated pool allocation and configuration function. 

The SW_Task structure adds the data member memoryPool  to allow for a 
task-specific pool. If specified, this task-specific pool would be used in class 

instance and link structure allocations instead of the default pool. 

The SW_Task structure adds the data members incidentPool  and 

parameterPool  to allow for a task-specific incident pools. If specified, the 

task-specific pool would be used in SW_Incident_new, 

SW_Incident_deallocate, SW_DataContainer_new and 

SW_DataContainer_deallocate instead of the buffer manager. 

To support the use of class-specific pools, the functions 

SW_BufferManager_allocBlockForPool and 

SW_BufferManager_freeBlockForPool are added. 

To streamline operations on sets of allocations and deallocations (supporting 

task-specific incident and parameter pools) by reducing the overhead of 

entering and leaving the SW_BufferManager critical section, a transactional-

style interface will be added to the SW_BufferManager.   

SW_BufferManager_startTransaction, SW_BufferManager_endTransaction, 

SW_BufferManager_fastAlloc and SW_BufferManager_fastFree functions will 

be added 

Template Extensions 

Extensions to the C-Maps code generation templates are applied to ensure the 

proper memory mechanisms are used in accord with the marking values.   

A pool allocation and configuration function is generated to specify the block 

sizes for the default pool. This function is called from the main() function. 

The generated function System_Run() is modified to create, configure, and 

delete task-specific pools as specified by markings. 

When to Apply General Purpose Task Pool 

Template modifications are required to ensure that only truly local requests 

are mode of the general purpose task pool.  In order for a class to use this 

pool the following conditions must be met: 

- The class is in a specific fixed task, and not SYS_TASK_ANY. 

- The class is not statically allocated, and does not have a MaxIndex value 

specified indicating direct array storage. 

- The class is allocated to a task with a general purpose pool defined. 



Specialized Memory Pool for C and C++  
 

 

 

 

6 

 

 

- All actions where the class is CREATEd and DELETEd are allocated to the 

same fixed task. 

Task-Safety Report 

If only domain multi-task is implemented, then there will be no circumstances 

where the use of task-specific pools could result in an unsafe intertask 

memory access.  However with domain operation multi-task or class multi-

task support, it may be possible to specify that a single domain can run in 

multiple tasks.  In this case, a set of templates will be run as part of code 

generation pre-processing to look for uses of task-specific pools that may 

incorrectly span task boundaries.  

For example, assume the Carshuffle VehicleHousing domain has some domain 

operations that run in SYS_TASK_ID_MAIN , and some domain operations 

that run in SYS_TASK_ID_AUX.  If the class VH.Car does not specify a 

MaxIndex and is not statically initialized, task-specific pools are specified, and 

Car instances are CREATEd in the task SYS_TASK_ID_MAIN and DELETEd in 

the task SYS_TASK_ID_AUX, this will be highlighted as a run-time issue via a 

transformation Engine LOGERROR message. 

Allocating memory in one task and then deallocating it in another task is 

problematic if the pool specifications do not support the exact same size 

blocks.  For example, if task T1 supports blocks of 16, 32 and 64 bytes and 

T2 supports blocks of 32 and 64 bytes, a problem occurs if a block of size 16 

or less were allocated in T1 and deallocated in T2. 

For example, T1 receives a request to allocate a block of size 8.  T1 chooses a 

block size of 16 because it is the closest block size to 8.  When the block is 

deallocated in T2, the pool block chooses the  first pool with size >= to 8. For 

T2, this is 32.  The block, which is actually size 16, is now in a pool of size 32 

blocks.  If the size 16 block is allocated as if it is 32, memory corruption will 

occur as 16 bytes of the adjacent block in the buffer manager will be 

overwritten.   

Usage Statistics Reporting 

As a tool to designers to aid in the proper allocation of pools, simple statistics 

will be kept throughout each execution of the system, and reported upon 

system shutdown.  For the default process pool and for each task-specific 

general purpose pool, the maximum number of blocks on a per-cluster (block-

size) basis will be kept – a “high water” mark will be reported.  In addition, 

the current number of blocks (per cluster) still in use at shutdown time will be 

reported. 

For the task-specific incident pool, the total number of incidents allocated and 

released will be reported per-task.  (It is thought that deficit trends – where a 

large imbalance exists in this area might be useful information). 

All of the above statistic collection and report code is activated by the 

PATH_MEMORY_STATISTICS compile flag. 

 

4. Feature Design 



Specialized Memory Pool for C and C++  
 

 

 

 

7 

 

 

PfdPoolSpecification
size : Integer
count : Integer
reloadThreshold : Integer
unloadThreshold : Integer

PfdCriticalSection
inUse : Mutex

Enter()
Leave()
Try()

PfdPoolBlockSpecification
count : Integer

1..n1

+pool_specification

1..n1 A12

PfdBufferManager
gHandle : PfdBufferManager
emergencyReserve : Handle

startTransaction()
endTransaction()
fastAlloc()
fastFree()
maxAllocSize()
whichBlockIndex()
reportError()
isAllocated()
allocBlock()
freeBlock()

<<singleton>>

0..1

0..*

+crit_section 0..1

0..*

A1

1..*

1

+cluster_specification
1..*

1

A15

PfdClusterManager
size Index : Integer

nextFreeBlock()
allocateCluster()

0..*1

+cluster_manager
0..*1

A13

MemoryBlock

PfdAllocationCluster
clusterIndex : Integer
cluster : Handle
freeBlockCount : Integer

nextFreeBlock()
freeBlock()

0..1

1

+next_cluster

0..1

A16

10..1

1

+top_cluster

0..1

1

A14

0..1

1

+first_cluster_with_free

0..1

1

A17

1

0.. *

+manager

1

0.. *

A18

0..1

0..*

+cluster_allocated_from
0..1

0..*

A21

0..1

0..1

+next_free_item
0..1

0..1

A22

 

 Memory Management Software Mechanisms Class 

Diagram 

Classes 

MemoryBlock   

(U) A block of free memory residing in a local pool or buffer manager. 

PfdAllocationCluster   

(U) A block of memory divided up and allocated out in equal sized blocks.   

cluster  (Handle): (U) Block of space managed by the cluster.  This 

space is divided up into blocks of the appropriate size and allocated. 

clusterIndex  (Integer): (U) The index of the cluster into the list of 

clusters held by the cluster manager. 

freeBlockCount  (Integer): (U) The number of free blocks left within this 

cluster. 

PfdBufferManager  <<singleton>> 

(U) Allocates and frees dynamic memory blocks efficiently by using a limited 

set of block sizes.  The buffer manager is a singleton instance that can be 

accessed  by any of the tasks in the program.  The buffer manager is 

protected by a mutex so it can be accessed by multiple tasks. 



Specialized Memory Pool for C and C++  
 

 

 

 

8 

 

 

(U) The population of block sizes can be customized by specifying design 

markings. 

emergencyReserve  (Handle): (U) Reserved memory to be released if 

memory runs out.  Releasing the reserved memory will allow the 

system to terminate gracefully. 

gHandle  (PfdBufferManager): (U) The singleton instance of the buffer 

manager. 

PfdClusterManager   

(U) Tracks all of the clusters holding memory blocks of the same size.  The 

cluster manager creates clusters at initialization time and allocates new 

clusters as the existing clusters run out of memory blocks. 

sizeIndex  (Integer): (U) The size of the block held by this cluster. 

PfdCriticalSection   

(U) A synchronization mechanism to support concurrent access to a shared 

resource. 

inUse  (Mutex): (U) The mutex or critical section providing locking to the 

client tasks.  The implementation is platform specific. 

PfdLocalPool   

(U) A pool of memory blocks of itemSize allocated from the buffer manager.  

The memory pool avoids the overhead of acquiring the critical section for the 

singleton buffer manager each time an allocation is done.   

(U) At startup, the pool acquires the buffer manager critical section and loads 

the pool.  When the number of free blocks drops below the reloadThreshold, 

the pool attempts to acquire the buffer manager critical section and reload 

the pool.   

(U) If the number of empty slots in the pool falls below the unloadThreshold, 

the pool attempts to acquire the buffer manager critical section and returns 

memory to the buffer manager. 

itemSize  (Integer): (U) The size of the memory blocks held in the pool 

in bytes. 

maxCount  (Integer): (U) The maximum number of memory blocks that 

can be stored in the pool. 

nextAvailable  (Integer): (U) The index of the next free block or -1 if no 

free blocks are available. 

reloadThreshold  (Integer): (U) Start trying to acquire the lock on the 

buffer manger to reload the pool when the number of free blocks falls 

below this number. 

unloadThreshold  (Integer): (U) Start trying to acquire the buffer 

manager lock to unload the pool when the number of free spaces 

falls below this number. 

PfdPoolBlock   

(U) A set of local memory pools of different sizes used exclusively by a 

particular task. 

poolCount  (Integer): (U) The number of local pools in this block 



Specialized Memory Pool for C and C++  
 

 

 

 

9 

 

 

PfdPoolBlockSpecification   

(U) Defines the parameters for a set of memory pools.     

count  (Integer): (U) The number of pools of different sizes available. 

PfdPoolSpecification   

(U) Defines the parameters for the memory blocks held by a memory pool. 

count  (Integer): (U) The number of blocks of memory in the pool. 

reloadThreshold  (Integer): (U) When the number of free blocks in the 

pool falls below this threshold, start attempting to acquire the lock on 

the buffer manager. 

size  (Integer): (U) The size of each block of memory in the pool. 

unloadThreshold  (Integer): (U) When the number of empty spots in 

the pool falls below this threshold, start attempting to acquire the 

lock on the buffer manager. 

PfdTask   

(U) A thread of control for dispatching events to state models and executing 

actions. 

Associations 

A1 :  

PfdCriticalSection crit_section (0..1) ← A1 → (*)  PfdBufferManager 

description: (U) The critical section that protects the buffer manager as 

memory is allocated by multiple threads. 

SortOrder: FIFO 

A11 :  

PfdLocalPool pool_block (1..*) ← A11 → (1)  PfdPoolBlock 

description: (U) A set of memory pools holding items of different sizes. 

SortOrder: FIFO 

A12 :  

PfdPoolSpecification pool_specification (1..*) ← A12 → (1)  

PfdPoolBlockSpecification 

description: (U) Defines all the memory pool sizes supported by the pool 

block.  PoolSpecifications are order by ascending size across this 

association 

SortOrder: ascending 

A13 :  

PfdClusterManager cluster_manager (*) ← A13 → (1)  PfdBufferManager 

description: (U) The cluster managers that perform allocations on the 

different block sizes. 

SortOrder: FIFO 

A14 :  

PfdAllocationCluster top_cluster (0..1) ← A14 → (1)  PfdClusterManager 

description: (U) The first cluster of the specified size. 

SortOrder: FIFO 

A15 :  

PfdPoolBlockSpecification cluster_specification (1..*) ← A15 → (1)  

PfdBufferManager 

description: (U) Defines the set of memory block sizes supported by the 

buffer manager. 



Specialized Memory Pool for C and C++  
 

 

 

 

10 

 

 

SortOrder: FIFO 

A16 :  

PfdAllocationCluster next_cluster (0..1) ← A16 → (1)  PfdAllocationCluster 

description: (U) The next cluster allocating blocks of the same size. 

SortOrder: FIFO 

A17 :  

PfdAllocationCluster first_cluster_with_free (0..1) ← A17 → (1)  

PfdClusterManager 

description: (U) First cluster managed by the manager that may contain a 

free block. 

SortOrder: FIFO 

A18 :  

PfdClusterManager manager (1) ← A18 → (*)  PfdAllocationCluster 

description: (U) Defines the parent manager for this cluster.   

SortOrder: FIFO 

A19 :  

MemoryBlock item_pool (*) ← A19 → (1)  PfdLocalPool 

description: (U) The set of free blocks in the local pool.  This association 

is implemented as an array of size maxCount.  The array holds the 

set of available blocks.  Blocks may be freed to an empty spot in the 

array.  The nextAvailable attribute keeps track of the first memory 

block stored in the array.  

SortOrder: FIFO 

A20 :  

PfdPoolBlock general_pool_block (0..1) ← A20 → (1)  PfdTask 

description: (U) The general purpose local memory pool for this task.  

When linked, use this pool when allocating memory from this task. 

SortOrder: FIFO 

A21 :  

PfdAllocationCluster cluster_allocated_from (0..1) ← A21 → (*)  

MemoryBlock 

description: (U)  A memory block when it is allocated points back to its 

cluster.  When it is deallocated, the pointer is used to determine its 

owning cluster. 

SortOrder: FIFO 

A22 :  

MemoryBlock next_free_item (0..1) ← A22 → (0..1)  PfdAllocationCluster 

description: (U) The free memory block in this cluster with the lowest 

address.  The next memory block to be allocated. 

SortOrder: FIFO 

 

Domain Scenarios 

 



Specialized Memory Pool for C and C++  
 

 

 

 

11 

 

 

 : client

 : PfdBufferManager  : 
PfdClusterManager

existing : 
PfdAllocationCluster

new : 
PfdAllocationCluster

UNCLASSIFIED Allocate from Buffer Manager - New Cluster Required

Description:
Allocate a block of memory from the buffer manager.  For this 
nominal flow, a block of memory is successfully allocated from a 
newly allocated cluster.

Preconditions:
1. Buffer manager is initialized.
2. Size of memory block requested is less than the maximum size 
supported by buffer manager configuration.
3. Operating system has sufficient free heap memory to allocate a 
new cluster.
4. Existing clusters of the size requested do not have any free 
blocks.

Postconditions:
1. Buffer manager located and returned a handle to memory block 
of the appropriate size.

Find a new free block to 
prepare for the next 
allocation.

Mark allocated block 
with owning cluster.

Find the cluster manager 
for requested size.

can't find a free 
block.  Allocate a 
new cluster.

Try existing clusters to find 
one with a free block.

UNCLASSIFIED

1: allocBlock(Integer)

2: startTransaction(Boolean)

3: whichBlockIndex(Integer)

4: nextFreeBlock( )

13: endTransaction( )

14: Return Block Handle

5: nextFreeBlock( )

7: allocateCluster(Ref<PfdAllocationCluster>)

8: <<create>>

9: nextFreeBlock( )

6: Return  null

11: Return Block Handle

10: isAllocated(Handle)

12: Return Block Handle

 
Domain Scenario - Allocate from Buffer Manager - New Cluster Required 

 



Specialized Memory Pool for C and C++  
 

 

 

 

12 

 

 

 : client

 : PfdBufferManager  : 
PfdClusterManager

existing : 
PfdAllocationCluster

new : 
PfdAllocationCluster

UNCLASSIFIED Allocate from Buffer Manager - Out of Memory

Description:
Allocate a block of memory from the buffer manager.  For this 
exceptional flow, a block of memory is can't be allocated because 
there are no free blocks and a new cluster can't be allocated 
because the operating system runs out of memory.

Preconditions:
1. Buffer manager is initialized.
2. Size of memory block requested is less than the maximum size 
supported by buffer manager configuration.
3. Operating system does not have sufficient free heap memory to 
allocate a new cluster if necessary.

Postconditions:
1. Out of memory error is reported to software mechanisms error 
handler.
2. Registered error handlers are called.

Find the cluster manager 
for requested size.

No free blocks found in 
existing clusters.  
Allocation of a new cluster 
fails.

Try existing clusters to find 
one with a free block.

1: allocBlock(Integer)

2: startTransaction(Boolean)

3: whichBlockIndex(Integer)

9: endTransaction( )

10: Return NULL

4: nextFreeBlock( )

6: allocateCluster(Ref<PfdAllocationCluster>)

5: nextFreeBlock( )

UNCLASSIFIED

7: <<create>>

8: reportError(sw_predefined_error_group_e group, sw_predefined_error_code_e)

handlers for this error code are 
called by PfdProcess.

 
Domain Scenario - Allocate from Buffer Manager - Out of memory 

 



Specialized Memory Pool for C and C++  
 

 

 

 

13 

 

 

 : client

 : PfdBufferManager  : 
PfdClusterManager

 : 
PfdAllocationCluster

UNCLASSIFIED Allocate from Buffer Manager - Nominal

Description:
Allocate a block of memory from the buffer manager.  For this 
nominal flow, a block of memory is successfully allocated from 
existing cluster.

Preconditions:
1. Buffer manager is initialized.
2. Size of memory block requested is less than the maximum 
size supported by buffer manager configuration.
3. Existing clusters of the size requested hold free blocks. 

Postcondi tions:
1. Buffer manager located and returned a handle to memory 
block of the appropriate size.

2: startTransaction(Boolean)

9: endTransaction( )

4: nextFreeBlock( )

3: whichBlockIndex(Integer)

Find a  new free block to 
prepare for the next 
allocation.

Mark allocated block 
with owning cluster.

5: nextFreeBlock( )

Find the cluster manager 
for requested size.

6: isAllocated(Handle)

1: allocBlock(Integer)

Try existing clusters to find 
one wi th a free b lock.

10: Return Block Handle

UNCLASSIFIED

7: Return Block Handle

8: Return Block Handle

 
Domain Scenario - Allocate from Buffer Manager 

 



Specialized Memory Pool for C and C++  
 

 

 

 

14 

 

 

 : client

 : PfdPoolBlock  : PfdLocalPool  : 
PfdBufferManager

UNCLASSIFIED Allocate from Local Pool - Out of Memory

Description:
Allocate a block of memory from a local pool.  For this exceptional 
flow, the pool is empty and there is insufficient memory to reload the 
local pool.  The allocation fails. 

Preconditions:
1. Buffer manager is initialized.
2. Local pools are initialized.
3. Size of memory block requested is less than the maximum size 
supported by local pool configuration.
4. Local pool of correct size is empty.
5. Buffer manager can't allocate enough memory to reload the local 
pool.

Postconditions:
1. Local pool located and null handle is returned.

UNCLASSIFIED

Locate local pool of 
size block requested

Attempt to reload 
pool fails.

See Buffer Manager 
Allocation Out of 
Memory Scenarios 
for more details.

1: allocateItem(Integer)

2: allocateItem( )

7: Return NULL

8: Return NULL

3: startTransaction(Boolean)

6: endTransaction( )

4: fastAlloc(Integer)

5: Return NULL

 
Domain Scenario - Allocate from Local Pool - Out of Memory 

 



Specialized Memory Pool for C and C++  
 

 

 

 

15 

 

 

 : client

 : PfdPoolBlock  : PfdLocalPool  : 
PfdBufferManager

UNCLASSIFIED Allocate from Local Pool - Reload Required

Description:
Allocate a block of memory from a local pool.  For this nominal flow, 
the pool is empty and is successfully reloaded before allocating a 
block.

Preconditions:
1. Buffer manager is initialized.
2. Local pools are initialized.
3. Size of memory block requested is less than the maximum size 
supported by local pool configuration.
4. Local pool of correct size is empty.
5. Buffer manager contains sufficient free memory to support 
reloading the pool.

Postconditions:
1. Local pool located and returned a handle to memory block of the 
appropriate size.

UNCLASSIFIED

Locate local pool of 
size block requested

Update next available 
block to prepare for 
next allocation.

1: allocateItem(Integer)

2: allocateItem( )

7: Return Memory Block

8: Return Memory Block

3: startTransaction(Boolean)

6: endTransaction( )

4: fastAlloc(Integer)

5: Return Memory Block

Allocate enough 
blocks to fill half 
the pool.

See Buffer Manager 
Allocation 
Scenarios for more 
details.

 
Domain Scenario - Allocate from Local Pool - Reload required 

 



Specialized Memory Pool for C and C++  
 

 

 

 

16 

 

 

 : client

 : PfdPoolBlock  : PfdLocalPool

U NC LASSIFIED Allocate from Local Pool - Nominal

Description:
Allocate a block of memory from a local pool.  For this nominal flow, 
a block of memory is available in the local pool and no reload is 
necessary.

Preconditions:
1. Buffer manager is initialized.
2. Local pools are initialized.
3. Size of memory block requested is less than the maximum size 
supported by local pool configuration.
4. Local pool contains a block of the correct size.

Postconditions:
1. Local pool located and returned a handle to memory block of the 
appropriate size.

UNCLASSIFIED

1: allocateItem(Integer)

Locate local pool of 
size block requested

2: allocateItem( )

Update next available 
block to prepare for 
next allocation.

3: Return Memory Block

4: Return Memory Block

 
Domain Scenario - Allocate from Local Pool 

 



Specialized Memory Pool for C and C++  
 

 

 

 

17 

 

 

 : client

 : 
PfdBufferManager

 : PfdAllocationCluster

UNCLASSIFIED Deallocate to Buffer Manager - Nominal

Description:
Deallocate a block of memory and release it to the buffer 
manager.  For this nominal flow, a block of memory is 
successfully deallocated.

Preconditions:
1. Buffer manager is initialized.
2. Block being deallocated was allocated from buffer manager.
3. Block being deallocated is non-NULL.

Postconditions:
1. Memory block returned to free storage and is ready to be 
allocated again.

U NC LASSIFIED

2: startTransaction(Boolean)

4: endTransaction( )

Use the bytes before the 
memory block handle to find 
the cluster owning the block.

3: freeBlock(Handle)

1: freeBlock(Handle)

 
Domain Scenario - Deallocate to Buffer Manager 

 



Specialized Memory Pool for C and C++  
 

 

 

 

18 

 

 

 : client

 : 
PfdPoolBlock

 : PfdLocalPool  : 
PfdBufferManager

Description:
Deallocate a block of memory and release i t to the local pool.  For 
this nominal flow, the local pool does not have any empty slo ts and 
the local pool must return memory back to the buffer manager.

Precondi tions:
1. Buffer manager is initialized.
2. Block being deallocated was allocated  from local pool or buffer 
manager.
3. Block being deallocated is non-NULL.
4. Local pool no free slots in it to store the newly freed block.

Postcondi tions:
1. Memory block returned to free storage and i s ready to be 
allocated again.

UNCLASSIFIED

U NC LAS SIFIE D

Deallocate to Local Pool - Unload Required

Set next available 
and prepare for next 
allocation.

1: deallocateItem(Integer, Handle)

2: deallocateItem(Handle)

3: startTransaction(Boolean)

4: fastFree(Handle)

5: endTransaction( )

Return half the 
blocks in the pool 
back to the buffer 
manager.

 
Domain Scenario - Deallocate to Local Pool - Unload required 

 



Specialized Memory Pool for C and C++  
 

 

 

 

19 

 

 

 : client

 : 
PfdPoolBlock

 : PfdLocalPool

Description:
Deallocate a block of memory and release it to the local pool.  For 
this nominal flow, the local pool has empty slots in it and no unload 
is required.

Preconditions:
1. Buffer manager is initialized.
2. Block being deallocated was allocated from local pool or buffer 
manager.
3. Block being deallocated is non-NULL.
4. Local pool has at least one free slot in it to store the newly freed 
block.

Postconditions:
1. Memory block returned to free storage and is ready to be 
allocated again.

UNCLASSIFIED

UNCLASSIFIED

Deallocate to Local Pool - Nominal

1: deallocateItem(Integer, Handle)

2: deallocateItem(Handle)

Set next available 
and prepare for next 
allocation.

 
Domain Scenario - Deallocate to Local Pool 

 



Specialized Memory Pool for C and C++  
 

 

 

 

20 

 

 

 : 
PfdBufferManager

 : 
PfdClusterManager

 : 
PfdAllocationCluster

Description:
The operating system runs out of memory while the buffer 
manager is initializing its clusters.  An out of memory error is 
reported.

Preconditions:
1. System is initializing.
2. Operating system has insufficient memory to allocate all the 
clusters.

Postconditions:
1. Out of memory error is reported to software mechanisms 
error handler.
2. Registered error handlers are called.

create one cluster manager for 
each memory block size in pool 
speci fication.

Initia lize B uffer Manager - Out of MemoryUNCLASSIFIED

UNCLASSIFIED

1: <<create>>

2: allocateCluster(Ref<PfdAllocationCluster>)

3: <<create>>

4: reportE rror(sw_predefined_error_group_e group, sw_predefined_error_code_e)

handlers for this error code 
are called by PfdProcess

 
Domain Scenario - Initialize Buffer Manager - Out of Memory 

 



Specialized Memory Pool for C and C++  
 

 

 

 

21 

 

 

 : 
PfdBufferManager

 : 
PfdClusterManager

 : 
PfdAllocationCluster

D escription:
The buffer manager initializes its clusters.  For this nominal flow, 
clusters are successfully allocated from the operating system 
memory manager.

Preconditions:
1. S ystem is initia lizing.
2. Operating system has suffi cient memory to  allocate all the 
clusters.

Postconditions:
1. Clusters are populated according to memory pool 
specifications.
2. B uffer manager is ready to allocate new memory blocks.

1: <<create>>

create one cluster manager for 
each memory block size in pool 
specification.

3: <<create>>

2: allocateCluster(Ref<PfdAllocationCluster>)

allocate a block of memory 
from the operating system 
of size =  block size * block 
count

set up next free item and 
free block count

Initia lize B uffer ManagerUNC LAS SIFIED

UNCLASSIFIED

 
Domain Scenario - Initialize Buffer Manager 

Domain Services 

PfdAllocationCluster Operations 
PfdAllocationCluster:freeBlock (instance-based): (U) Return a memory block back to the free store 

so it can be allocated again. 
in: item_to_free (Handle): (U) The block to free. 

 
PfdAllocationCluster:nextFreeBlock (instance-based): (U) Returns the next free block in the 

cluster.  Returns 0 if none are available. 
 returns: (Handle) 

 

PfdBufferManager Operations 

PfdBufferManager:allocBlock (instance-based): (U) Allocate a block of memory of at least size and 
return a handle to it. 

 returns: (Handle) 
in: size (Integer): (U) The minimum size of the memory block to allocate. 

 
PfdBufferManager:endTransaction (object-based): (U) Unlock the mutex for the buffer manager. 

 
PfdBufferManager:fastAlloc (object-based): (U) Allocate without locking the mutex.  The client 

must call startTransaction before calling this member function. 
 returns: (Handle) 

in: size (Integer): (U) The size of the memory block to be allocated. 



Specialized Memory Pool for C and C++  
 

 

 

 

22 

 

 

 
PfdBufferManager:fastFree (object-based): (U) Free without locking the mutex.  The client must 

call startTransaction before calling this member function. 
in: block_to_free (Handle): (U) The handle to the block that will be returned to available 

free memory.   
 

PfdBufferManager:freeBlock (instance-based): (U) Put a block to the free store.  The block is ready 
to be allocated again. 

in: block (Handle): (U) A handle to the block to be freed.  Ignore NULL handles. 
 

PfdBufferManager:isAllocated (object-based): (U) Return TRUE if the block has already been 
allocated.  Return FALSE if the block is free. 

 returns: (Boolean) 
in: block_handle (Handle): (U) Check this memory block to see if it is allocated or free. 

 
PfdBufferManager:maxAllocSize (object-based): (U) Return the maximum size block that can be 

allocated from the  buffer manager. 
 returns: (Integer) 

 
PfdBufferManager:reportError (instance-based): (U) Report an memory error detected during 

allocation or deallocation. 
in: error_group (sw_predefined_error_group_e group): (U) Report an error belonging to 

this group. 
in: error_code (sw_predefined_error_code_e): (U) Report an error with this code. 

 
PfdBufferManager:startTransaction (object-based): (U) Obtain the mutex required for accessing 

the buffer manager.  Return TRUE if the lock could be obtained.  Return FALSE, if 
wait_for_critical was FALSE and the buffer manager lock could not be obtained without 
waiting. 

 returns: (Boolean) 
in: wait_for_critical (Boolean): (U) If TRUE, block while waiting for the buffer manager 

mutex.  If FALSE, only lock the mutex if it can acquired without waiting. 
 

PfdBufferManager:whichBlockIndex (object-based): (U) Return the index of the cluster used to 
allocate a block of the requested size. 

 returns: (Integer) 
in: request_size (Integer): (U) The size of the block requested. 

 

PfdClusterManager Operations 

PfdClusterManager:allocateCluster (instance-based): (U) Allocate a new cluster for this manager.   
Return TRUE if successful. 

 returns: (Boolean) 
in: previous_cluster (Ref<PfdAllocationCluster>): (U) The previous cluster in the chain of 

clusters. 
 

PfdClusterManager:nextFreeBlock (instance-based): (U) Return a free block from an allocation 
cluster.  Return 0 if all clusters are used and no new clusters can be allocated. 

 returns: (Handle) 

 



Specialized Memory Pool for C and C++  
 

 

 

 

23 

 

 

PfdCriticalSection Operations 

PfdCriticalSection:Enter (instance-based): (U) Lock the critical section.  Suspend the task and wait 
if the critical section is locked by another task. 

 
PfdCriticalSection:Leave (instance-based): (U) Unlock the critical section so that other tasks may 

access the shared resource. 
 

PfdCriticalSection:Try (instance-based): (U) Try to lock the critical section.  Don't wait if the 
critical section is locked by another task.  Return TRUE if the critical section was sucessfully 
locked.  Return FALSE if the critical section ws not successfully locked.  To acquire the lock, the 
client must call Enter to wait for the lock to become availble or poll using Try. 

 returns: (Boolean) 

 

PfdLocalPool Operations 

PfdLocalPool:allocateItem (instance-based): (U) Allocated a block of memory from the pool.  
Return a pointer to the block or 0 if the block can't be allocated. 

 returns: (Handle) 

 
PfdLocalPool:deallocateItem (instance-based): (U) Free a block of memory. 

in: item (Handle): (U) A pointer to the block of memory to free. 
 

PfdLocalPool:reload (instance-based): (U) Reload the pool with more blocks from the buffer 
manager if it is empty or almost out. 

 
PfdLocalPool:unload (instance-based): (U) Return some of the empty memory to the buffer manager 

if the pool is completely full or nearly full.   
 

PfdPoolBlock Operations 

PfdPoolBlock:allocateItem (instance-based): (U) Find the correct pool containing the correct 
memory block size.  Allocate a block of memory from the pool and return a pointer to the 
memory. 

 returns: (Handle) 
in: size (Integer): (U) The size of the block of memory to allocate. 

 
PfdPoolBlock:deallocateItem (instance-based): (U) Return a memory block to the pool for its size. 

in: item_size (Integer): (U) The size of the memory block pointed to by item in bytes. 
in: item (Handle): (U) A handle to the block of memory to be freed. 

 

5. System Types 

Enumerates 

User Defined Types 

Mutex : base: Integer 

PfdBufferManager : base: Integer 

sw_predefined_error_code_e : base: Integer 

sw_predefined_error_group_e group : base: Integer 


