
©2008 by Pathfinder Solutions

UML Essentials Localization – Double

Byte String Support

Version 1.2

November 7, 2002

PathMATE Technical Notes

Pathfinder Solutions LLC

33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com

888-662-7284

 ii

Table Of Contents

1. Introduction... 1

2. Goals .. 1

3. Strategy ... 1

Analysis Models... 1

Analysis Elements and Fields .. 1

Modeling Conventions .. 1

Analysis Examples ... 2

UML Essentials Features ... 5

Editor Integration .. 5

Springboard Extensions ... 5

Report Template Extensions ... 5

Code Template Extensions .. 5

Appendix A – Analysis Element String and StringList Fields 6

UML Essentials Localization – Double Byte String Support

1

1. Introduction

This Technical Note describes the approach to be applied to support localization

requiring double-byte string support. It covers the impacts on all user-visible

aspects of UML Essentials, and how these capabilities are to be applied by the user.

2. Goals

Currently UML Essentials integration and tooling has no specific support for double-

byte strings, forcing modelers to use a roman alphabet. The purpose of the

localization capabilities is to allow modelers to express themselves in local language

and gain the full benefit of abstraction. This will include Japanese language support.

An additional goal is to constrain the bulk of the impact of the localization changes

within Springboard and other "upstream" elements, and reduce impact on any report

or code generation templates. If changes to existing report and code templates can

be held to a minimum and made in a locale-independent manner, then the same

UML Foundation products can be used for all customers regardless of locale,

increasing product quality and reducing feature release latency.

3. Strategy

Analysis Models

Analysis Elements and Fields

Each model artifact is called an analysis element. Examples of analysis

elements include domain, class, attribute, state, action, and PAL statement.

Analysis elements have fields that convey information about the analysis

element. Examples of analysis element fields include domain.name,

class.description, and attribute.dataType. A complete list of all analysis

elements and fields supported in UML Essentials is in the Springboard User's

Guide "Appendix A: Analysis Element Field Reference", starting on page 23 of

that document.

The primary strategy has two elements. The first is to simply allow multi-

byte values for all analysis element String fields. The second is to allow the

use of local language in the specification of "naming fields" along with the

concurrent use of a ImplementationName property used to capture a double-

byte identifier to be used in code generation for implementation language

identifiers.

Please refer to Appendix A of this document for a table of analysis element

fields of String type that will support double-byte values.

Modeling Conventions

The modeler will use local language for analysis element names and

descriptions, providing this information in the standard UML editor fields. In

addition, the UML Essentials ImplementationName coloring property may be

used to specify an English name for any analysis element that has a name

field. This ImplementationName may be specified using fields in Rose, or an

external property.txt file may be used to specify these using this standard

code generation property mechanism.

UML Essentials Localization – Double Byte String Support

2

While MBSE conventions call for a prefix to be specified for the Domain and

the Class, their names are still used to construct some implementation-level

identifiers, so an ImplementationName is required for any domain or class

with a local (double byte) name. All analysis elements listed in the table in

Appendix A require an ImplementationName when a local (double byte) name

is used, except for those analysis elements with no name: Action, BinaryRel

(name is derived), Bridge, NameValuePair, and SubSuperRel.

The new system-level property "AutomaticImplementationName" (default

FALSE) can be set to TRUE to indicate that an ImplementationName should be

automatically constructed by springboard for every analysis element.

Analysis Examples

Please note that the examples below use roman characters for local language

names instead of the appropriate local double-byte characters to be actually

used.

Class Diagram

In the following class diagram example, the class name, attribute names, and

association role phrases are all expressed using double-byte local language,

and therefore all require ImplementationName values:

UML Essentials Localization – Double Byte String Support

3

The above example only shows two property dialogs, but all of the analysis

elements must have ImplementationName specified:

Analysis element

local

name ImplementationName

class Hito Person

attribute nameae name

class Inu Dog

attribute nameae name

attribute iro color

attribute bango number

UML Essentials Localization – Double Byte String Support

4

attribute urusa-i noisy

participant (role phrase) yobi-masu calls

participant (role phrase) kotae-masu answers
 (Apologies for any defective Japanese syntax.)

Assuming the context of a Pets domain with the domain prefix PETS, the above
analysis would generate code fragments looking like:

struct PETS_Person
// from class Hito
{
 SW_String name; // from namae
 struct SW_BaseList across_A1_to_answers;
. . .

struct PETS_Dog
// from class Inu
{
 SW_String name; // from namae
 sys_color_e color; // from iro
 int number; // from bango
 bool_t noisy; // from urusa-i
 PETS_Person_handle_t across_A1_to_calls;
. . .

Action Language

The analyst developing PAL actions must be careful to properly mix local

language analysis element identifiers and comments with PAL keywords and

other fixed syntactic elements in single-byte strings only. Action local

variables can be named in local language using the standard PAL statement

coloring syntax.

 PAL local variable declaration example:

 Integer inu_bango; {ImplementationName = "dog_number"}

In the above example this PAL local variable is called "inu_bango" in PAL, and
"dog_number" in the corresponding generated implementation code.

 Generated C local variable declaration example:

 int dog_number; /* inu_bango */

In places where the local variable is used, the local name can be used. At

translation time these references will be automatically converted using the

ImplementationName specified in the local variable declaration.

 PAL local variable reference example:

 inu_bango = inu_bango + 1;

 Generated C local variable reference example:

 dog_number = dog_number + 1;

UML Essentials Localization – Double Byte String Support

5

Comments in PAL actions can be double-byte, and will be carried through to

generated target documents.

UML Essentials Features

Editor Integration

Each of the UML Essentials editor integration support utilities will be extended

to use double-byte strings to access and manipulate analysis element String

fields. The names of the PAL files will use the local language names of the

analysis elements it comes from. The editor extract utility and its

accompanying XMI file emitter will also be extended to support double byte

local language in naming and description fields as well as all coloring

properties, either pre-defined or user-defined. Please note that many of

these coloring fields are used to capture information that must be double-

byte-only, such as domain and class prefix, relationship sort-order, etc.

Springboard Extensions

Springboard will be extended to support double byte local language in all

String fields including all coloring properties. The Pathfinder Action Language

parser in Springboard will be extended to support double-byte input.

For each analysis element with a name field, a companion langId field is

already defined to be a copy of the name field cleaned up for use as an

implementation language identifier. Springboard will be extended to override

the langId value with the ImplementationName if it is specified. When the
system-level property "AutomaticImplementationName" is found to be TRUE,

Springboard will automatically construct a single-byte langId value for every

analysis element that does not have one specified via ImplementationName.

Please note the Springboard template notation will not be extended to

support the specification of double-byte string literals. This limitation may

affect direct comparisons between String fields and template literals.

Report Template Extensions

The report template will be extended to display langId as well as the analysis

element name. If a langID distinct from the element name is provided (in the

case ImplementationName is used) this will be included in the report.

Code Template Extensions

The code generation templates for UML Foundation for C++, C, and Java will

be changed to use the langId field instead of the name field when

constructing identifiers for any analysis element. The local analysis element

name will be displayed as a comment supplementing the description

comments.

UML Essentials Localization – Double Byte String Support

6

Appendix A – Analysis Element String and

StringList Fields

The table below lists all the String-based fields which will support double-byte

values. A complete list of all analysis elements and fields supported in UML

Essentials is in the Springboard User's Guide "Appendix A: Analysis Element Field

Reference", starting on page 23 of that document.

Analysis Element field

Action actionText

Attribute description

 name

BaseType name

BinaryRel description

 name

Bridge description

DataType name

Domain description

 im

 name

 supportDiags

DomainService description

 name

Event description

 name

MethodInvocation name

NameValuePair paramName

Object description

 name

 std

ObjectService description

 name

Parameter description

 name

Participant name

Relationship description

Service description

 name

ServiceHandle name

State actionSummary

 description

 name

SubSuperRel description

System description

 domainChart

UML Essentials Localization – Double Byte String Support

7

 name

 supportDiags

UserDefinedType name

UserEnumerate name

UserNonEnumerate name

VariableDefinition name

